73 research outputs found

    Our Collective Hearts

    Get PDF

    Fratricide activity of MafB protein of N. meningitidis strain B16B6.

    Get PDF
    BACKGROUND: Neisseria meningitidis is an inhabitant of the mucosal surfaces of the human nasopharynx. We recently demonstrated that the secreted meningococcal Two-partner secretion protein A (TpsA) is involved in interbacterial competition. The C-terminal end of the large TpsA protein contains a small toxic domain that inhibits the growth of target bacteria. The producing cells are protected from this toxic activity by a small immunity protein that is encoded by the gene immediately downstream of the tpsA gene. Further downstream on the chromosome, a repertoire of toxic modules, designated tpsC cassettes, is encoded that could replace the toxic module of TpsA by recombination. Each tpsC cassette is associated with a gene encoding a cognate immunity protein. RESULTS: Blast searchers using the toxic domains of TpsA and TpsC proteins as queries identified homologies with the C-terminal part of neisserial MafB proteins, which, for the rest, showed no sequence similarity to TpsA proteins. On the chromosome, mafB genes are part of genomic islands, which include cassettes for additional toxic modules as well as genes putatively encoding immunity proteins. We demonstrate that a MafB protein of strain B16B6 inhibits the growth of a strain that does not produce the corresponding immunity protein. Assays in E. coli confirmed that the C-terminal region of MafB is responsible for toxicity, which is inhibited by the cognate immunity protein. Pull-down assays revealed direct interaction between MafB toxic domains and the cognate immunity proteins. CONCLUSIONS: The meningococcal MafB proteins are novel toxic proteins involved in interbacterial competition

    Recurrent Juvenile Nasopharyngeal Angiofibroma Treated with Gamma Knife Surgery

    Get PDF
    Radiosurgery has been rarely applied for juvenile nasopharyngeal angiofibroma (JNA) and cumulative reports are lacking. The authors report a case of successful treatment of recurred JNA with gamma knife surgery (GKS). A 48-yr-old man was presented with right visual acuity deterioration and brain magnetic resonance images (MRI) disclosed a 3 cm-sized intraorbital mass in the right orbit. He underwent a right fronto-temporal craniotomy and the mass was subtotally removed to preserve visual function. Histological diagnosis confirmed JNA in typical nature. However, the vision gradually worsened to fail four years after operation. MRI then showed regrowth of the tumor occupying most of the right orbit. GKS was done for the recurred lesion. A dose of 17 Gy was delivered to the 50% isodose line of tumor margin. During the following four-year follow-up period, the mass disappeared almost completely without any complications. Usually JNA can be exclusively diagnosed by radiological study alone. So this report of successful treatment of JNA with GKS may provide an important clue for the novel indication of GKS

    Life history of the Desert iguana, Dipsosaurus dorsalis

    No full text

    In Vivo PET Imaging of Monocytes Labeled with [89Zr]Zr-PLGA-NH2 Nanoparticles in Tumor and Staphylococcus aureus Infection Models

    No full text
    The exponential growth of research on cell-based therapy is in major need of reliable and sensitive tracking of a small number of therapeutic cells to improve our understanding of the in vivo cell-targeting properties. 111In-labeled poly(lactic-co-glycolic acid) with a primary amine endcap nanoparticles ([111In]In-PLGA-NH2 NPs) were previously used for cell labeling and in vivo tracking, using SPECT/CT imaging. However, to detect a low number of cells, a higher sensitivity of PET is preferred. Therefore, we developed 89Zr-labeled NPs for ex vivo cell labeling and in vivo cell tracking, using PET/MRI. We intrinsically and efficiently labeled PLGA-NH2 NPs with [89Zr]ZrCl4. In vitro, [89Zr]Zr-PLGA-NH2 NPs retained the radionuclide over a period of 2 weeks in PBS and human serum. THP-1 (human monocyte cell line) cells could be labeled with the NPs and retained the radionuclide over a period of 2 days, with no negative effect on cell viability (specific activity 279 ± 10 kBq/106 cells). PET/MRI imaging could detect low numbers of [89Zr]Zr-THP-1 cells (10,000 and 100,000 cells) injected subcutaneously in Matrigel. Last, in vivo tracking of the [89Zr]Zr-THP-1 cells upon intravenous injection showed specific accumulation in local intramuscular Staphylococcus aureus infection and infiltration into MDA-MB-231 tumors. In conclusion, we showed that [89Zr]Zr-PLGA-NH2 NPs can be used for immune-cell labeling and subsequent in vivo tracking of a small number of cells in different disease models
    corecore