6 research outputs found

    Boundary conditions for coupled quasilinear wave equations with application to isolated systems

    Get PDF
    We consider the initial-boundary value problem for systems of quasilinear wave equations on domains of the form [0,T]×Σ[0,T] \times \Sigma, where Σ\Sigma is a compact manifold with smooth boundaries Σ\partial\Sigma. By using an appropriate reduction to a first order symmetric hyperbolic system with maximal dissipative boundary conditions, well posedness of such problems is established for a large class of boundary conditions on Σ\partial\Sigma. We show that our class of boundary conditions is sufficiently general to allow for a well posed formulation for different wave problems in the presence of constraints and artificial, nonreflecting boundaries, including Maxwell's equations in the Lorentz gauge and Einstein's gravitational equations in harmonic coordinates. Our results should also be useful for obtaining stable finite-difference discretizations for such problems.Comment: 22 pages, no figure

    Well-posed initial-boundary value problem for the harmonic Einstein equations using energy estimates

    Get PDF
    In recent work, we used pseudo-differential theory to establish conditions that the initial-boundary value problem for second order systems of wave equations be strongly well-posed in a generalized sense. The applications included the harmonic version of the Einstein equations. Here we show that these results can also be obtained via standard energy estimates, thus establishing strong well-posedness of the harmonic Einstein problem in the classical sense.Comment: More explanatory material and title, as will appear in the published article in Classical and Quantum Gravit

    The discrete energy method in numerical relativity: Towards long-term stability

    Full text link
    The energy method can be used to identify well-posed initial boundary value problems for quasi-linear, symmetric hyperbolic partial differential equations with maximally dissipative boundary conditions. A similar analysis of the discrete system can be used to construct stable finite difference equations for these problems at the linear level. In this paper we apply these techniques to some test problems commonly used in numerical relativity and observe that while we obtain convergent schemes, fast growing modes, or ``artificial instabilities,'' contaminate the solution. We find that these growing modes can partially arise from the lack of a Leibnitz rule for discrete derivatives and discuss ways to limit this spurious growth.Comment: 18 pages, 22 figure

    From Geometry to Numerics: interdisciplinary aspects in mathematical and numerical relativity

    Full text link
    This article reviews some aspects in the current relationship between mathematical and numerical General Relativity. Focus is placed on the description of isolated systems, with a particular emphasis on recent developments in the study of black holes. Ideas concerning asymptotic flatness, the initial value problem, the constraint equations, evolution formalisms, geometric inequalities and quasi-local black hole horizons are discussed on the light of the interaction between numerical and mathematical relativists.Comment: Topical review commissioned by Classical and Quantum Gravity. Discussion inspired by the workshop "From Geometry to Numerics" (Paris, 20-24 November, 2006), part of the "General Relativity Trimester" at the Institut Henri Poincare (Fall 2006). Comments and references added. Typos corrected. Submitted to Classical and Quantum Gravit

    Summary of sessions B1/B2 and B2: relativistic astrophysics and numerical relativity

    No full text
    The numerical relativity session at GR18 was dominated by physics results on binary black hole mergers. Several groups can now simulate these from a time when the post-Newtonian equations of motion are still applicable, through several orbits and the merger to the ringdown phase, obtaining plausible gravitational waves at infinity, and showing some evidence of convergence with resolution. The results of different groups roughly agree. This new-won confidence has been used by these groups to begin mapping out the (finite dimensional) initial data space of the problem, with a particular focus on the effect of black hole spins, and the acceleration by gravitational wave recoil to hundreds of km s?1 of the final merged black hole. Other work was presented on a variety of topics, such as evolutions with matter, extreme mass ratio inspirals and technical issues such as gauge choices
    corecore