77 research outputs found

    The evolution of ageing in cooperative breeders

    Get PDF
    Cooperatively breeding animals live longer than their solitary counterparts. The traditional explanation for this is that cooperative breeding evolves more readily in long-lived species. Here, we reverse this argument and show that long lifespans are an evolutionary consequence of cooperative breeding. Natural selection favours a delayed onset of senescence in cooperative breeders, relative to solitary breeders, because cooperative breeders have a delayed age of first reproduction due to reproductive queueing. Especially long lifespans evolve in cooperative breeders with age-dependent reproductive queueing. Finally, we show that lower genetic relatedness among group members leads to the evolution of longer lifespans. This is because selection against higher mortality is weaker when mortality reduces competition between relatives. Our results link the evolutionary theory of ageing with kin selection theory, demonstrating that the evolution of ageing in cooperative breeders is driven by the timing of reproduction and kin structure within breeding territories

    Antagonistic pleiotropy and the evolution of extraordinary lifespans in eusocial organisms

    Get PDF
    Queens of eusocial species live extraordinarily long compared to their workers. So far, it has been argued that these lifespan divergences are readily explained by the classical evolutionary theory of ageing. As workers predominantly perform risky tasks, such as foraging and nest defense, and queens stay in the well-protected nests, selection against harmful genetic mutations expressed in old age should be weaker in workers than in queens due to caste differences in extrinsic mortality risk, and thus, lead to the evolution of longer queen and shorter worker lifespans. However, these arguments have not been supported by formal models. Here, we present a model for the evolution of caste-specific ageing in social insects, based on Williams’ antagonistic pleiotropy theory of ageing. In individual-based simulations, we assume that mutations with antagonistic fitness effects can act within castes, that is, mutations in early life are accompanied by an antagonistic effect acting in later life, or between castes, where antagonistic effects emerge due to caste antagonism or indirect genetic effects between castes. In monogynous social insect species with sterile workers, large lifespan divergences between castes evolved under all different scenarios of antagonistic effects, but regardless of the degree of caste-specific extrinsic mortality. Mutations with antagonistic fitness effects within castes reduced lifespans of both castes, while mutations with between-caste antagonistic effects decreased worker lifespans more than queen lifespans, and consequently increased lifespan divergences. Our results challenge the central explanatory role of extrinsic mortality for caste-specific ageing in eusocial organisms and suggest that antagonistic pleiotropy affects castes differently due to reproductive monopolization by queens, hence, reproductive division of labor. Finally, these findings provide new insights into the evolution of tissue-specific ageing in multicellular organisms in general

    Resource sharing leads to the emergence of division of labour

    Get PDF
    Division of labour occurs in a broad range of organisms. Yet, how division of labour can emerge in the absence of pre-existing interindividual differences is poorly understood. Using a simple but realistic model, we show that in a group of initially identical individuals, division of labour emerges spontaneously if returning foragers share part of their resources with other group members. In the absence of resource sharing, individuals follow an activity schedule of alternating between foraging and other tasks. If non-foraging individuals are fed by other individuals, their alternating activity schedule becomes interrupted, leading to task specialisation and the emergence of division of labour. Furthermore, nutritional differences between individuals reinforce division of labour. Such differences can be caused by increased metabolic rates during foraging or by dominance interactions during resource sharing. Our model proposes a plausible mechanism for the self-organised emergence of division of labour in animal groups of initially identical individuals. This mechanism could also play a role for the emergence of division of labour during the major evolutionary transitions to eusociality and multicellularity

    Removing Barriers to Health Care: Healthy Starts for New Americans

    Get PDF
    Objectives: • To determine if refugees completing a Medical Orientation Program for New Americans are better with several aspects of medicine in the US, such as making appointments; knowing more about diet and hygiene; and understanding the implications of mental and chronic illnesses. • To determine if Medical Passports provided to these individuals to improve continuity of care are useful and effective. • To make recommendations for improvements to the Medical Orientation Program for New Americans to the Community Health Center of Burlington (CHCB).https://scholarworks.uvm.edu/comphp_gallery/1052/thumbnail.jp

    Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): a randomised, open-label, multicentre trial

    Full text link

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    Get PDF
    Meeting Abstracts: Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo Clearwater Beach, FL, USA. 9-11 June 201

    Heating and cooling of building : design for efficiency

    No full text
    corecore