26 research outputs found

    TESS Spots a Compact System of Super-Earths around the Naked-eye Star HR 858

    Get PDF
    Transiting Exoplanet Survey Satellite (TESS) observations have revealed a compact multiplanet system around the sixth-magnitude star HR 858 (TIC 178155732, TOI 396), located 32 pc away. Three planets, each about twice the size of Earth, transit this slightly evolved, late F-type star, which is also a member of a visual binary. Two of the planets may be in mean motion resonance. We analyze the TESS observations, using novel methods to model and remove instrumental systematic errors, and combine these data with follow-up observations taken from a suite of ground-based telescopes to characterize the planetary system. The HR 858 planets are enticing targets for precise radial velocity observations, secondary eclipse spectroscopy, and measurements of the Rossiter-McLaughlin effect

    A giant planet candidate transiting a white dwarf

    Get PDF
    Astronomers have discovered thousands of planets outside the Solar System1, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star2, but more distant planets can survive this phase and remain in orbit around the white dwarf3,4. Some white dwarfs show evidence for rocky material floating in their atmospheres5, in warm debris disks6–9 or orbiting very closely10–12, which has been interpreted as the debris of rocky planets that were scattered inwards and tidally disrupted13. Recently, the discovery of a gaseous debris disk with a composition similar to that of ice giant planets14 demonstrated that massive planets might also find their way into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far, no intact planets have been detected in close orbits around white dwarfs. Here we report the observation of a giant planet candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4 days. We observed and modelled the periodic dimming of the white dwarf caused by the planet candidate passing in front of the star in its orbit. The planet candidate is roughly the same size as Jupiter and is no more than 14 times as massive (with 95 per cent confidence). Other cases of white dwarfs with close brown dwarf or stellar companions are explained as the consequence of common-envelope evolution, wherein the original orbit is enveloped during the red giant phase and shrinks owing to friction. In this case, however, the long orbital period (compared with other white dwarfs with close brown dwarf or stellar companions) and low mass of the planet candidate make common-envelope evolution less likely. Instead, our findings for the WD 1856+534 system indicate that giant planets can be scattered into tight orbits without being tidally disrupted, motivating the search for smaller transiting planets around white dwarfs

    TOI-1231 b: A Temperate, Neptune-sized Planet Transiting the Nearby M3 Dwarf NLTT 24399

    Get PDF
    We report the discovery of a transiting, temperate, Neptune-sized exoplanet orbiting the nearby (d = 27.5 pc), M3V star TOI-1231 (NLTT 24399, L 248-27, 2MASS J10265947-5228099). The planet was detected using photometric data from the Transiting Exoplanet Survey Satellite and followed up with observations from the Las Cumbres Observatory and the Antarctica Search for Transiting ExoPlanets program. Combining the photometric data sets, we find that the newly discovered planet has a radius of {3.65}_{-0.15}^{+0.16}\,{R}_{\oplus } and an orbital period of 24.246 days. Radial velocity measurements obtained with the Planet Finder Spectrograph on the Magellan Clay telescope confirm the existence of the planet and lead to a mass measurement of 15.5 3.3 M ⊕. With an equilibrium temperature of just 330 K, TOI-1231 b is one of the coolest small planets accessible for atmospheric studies thus far, and its host star's bright near-infrared brightness (J = 8.88, Ks = 8.07) makes it an exciting target for the Hubble Space Telescope and the James Webb Space Telescope. Future atmospheric observations would enable the first comparative planetology efforts in the 250-350 K temperature regime via comparisons with K2-18 b. Furthermore, TOI-1231's high systemic radial velocity (70.5 km s-1) may allow for the detection of low-velocity hydrogen atoms escaping the planet by Doppler, shifting the H i Lyα stellar emission away from the geocoronal and interstellar medium absorption features

    A pair of tess planets spanning the radius valley around the nearby mid-m dwarf ltt 3780

    Get PDF
    We present the confirmation of two new planets transiting the nearby mid-M dwarf LTT 3780 (TIC 36724087, TOI-732, V = 13.07, K s = 8.204, R s = 0.374 R o˙, M s = 0.401 M o˙, d = 22 pc). The two planet candidates are identified in a single Transiting Exoplanet Survey Satellite sector and validated with reconnaissance spectroscopy, ground-based photometric follow-up, and high-resolution imaging. With measured orbital periods of P b = 0.77, P c = 12.25 days and sizes r p,b = 1.33 ± 0.07, r p,c = 2.30 ± 0.16 R ⊕, the two planets span the radius valley in period-radius space around low-mass stars, thus making the system a laboratory to test competing theories of the emergence of the radius valley in that stellar mass regime. By combining 63 precise radial velocity measurements from the High Accuracy Radial velocity Planet Searcher (HARPS) and HARPS-N, we measure planet masses of mpb 2.62+ 0.48 and-0.46= mpc 8.6+1.6-1.3 M⊕, which indicates that LTT 3780b has a bulk composition consistent with being Earth-like, while LTT 3780c likely hosts an extended H/He envelope. We show that the recovered planetary masses are consistent with predictions from both photoevaporation and core-powered mass-loss models. The brightness and small size of LTT 3780, along with the measured planetary parameters, render LTT 3780b and c as accessible targets for atmospheric characterization of planets within the same planetary system and spanning the radius valley

    Host Plant Records for Fruit Flies (Diptera: Tephritidae: Dacini) in the Pacific Islands: 2. Infestation Statistics on Economic Hosts

    Get PDF
    Detailed host records are listed for 39 species of Bactrocera and 2 species of Dacus fruit flies, infesting 98 species of commercial and edible fruits in the Pacific Island Countries and Territories, based on sampling and incubating in laboratory almost 13,000 field collected samples, or over 380,000 fruits. For each host-fly-country association, quantitative data are presented on the weight and number of fruits collected, the proportion of infested samples, the number of adult flies emerged per kg of fruits and, whenever available, the percentage of individual fruits infested. All the published records of each fly-host-country association are cited and erroneous or dubious published records are rectified or commented. Laboratory forced infestation data are also cited and reviewed
    corecore