5 research outputs found

    Enhancement of psychosocial treatment with D-cycloserine: models, moderators, and future directions

    Full text link
    Advances in the understanding of the neurobiology of fear extinction have resulted in the development of d-cycloserine (DCS), a partial glutamatergic N-methyl-D-aspartate agonist, as an augmentation strategy for exposure treatment. We review a decade of research that has focused on the efficacy of DCS for augmenting the mechanisms (e.g., fear extinction) and outcome of exposure treatment across the anxiety disorders. Following a series of small-scale studies offering strong support for this clinical application, more recent larger-scale studies have yielded mixed results, with some showing weak or no effects. We discuss possible explanations for the mixed findings, pointing to both patient and session (i.e., learning experiences) characteristics as possible moderators of efficacy, and offer directions for future research in this area. We also review recent studies that have aimed to extend the work on DCS augmentation of exposure therapy for the anxiety disorders to DCS enhancement of learning-based interventions for addiction, anorexia nervosa, schizophrenia, and depression. Here, we attend to both DCS effects on facilitating therapeutic outcomes and additional therapeutic mechanisms beyond fear extinction (e.g., appetitive extinction, hippocampal-dependent learning).F31 MH103969 - NIMH NIH HHS; K24 DA030443 - NIDA NIH HHS; R34 MH099309 - NIMH NIH HHS; R34 MH086668 - NIMH NIH HHS; R21 MH102646 - NIMH NIH HHS; R34 MH099318 - NIMH NIH HH

    Posttraumatic stress symptom persistence across 24 years: association with brain structures

    No full text
    Posttraumatic stress disorder (PTSD) is known to persist, eliciting early medical co-morbidity, and accelerated aging. Although PTSD diagnosis has been found to be associated with smaller volume in multiple brain regions, posttraumatic stress (PTS) symptoms and their associations with brain morphometry are rarely assessed over long periods of time. We predicted that persistent PTS symptoms across ~24 years would be inversely associated with hippocampal, amygdala, anterior cingulate volumes, and hippocampal occupancy (HOC = hippocampal volume/[hippocampal volume + inferior lateral ventricle volume]) in late middle age. Exploratory analyses examined prefrontal regions. We assessed PTS symptoms in 247 men at average ages 38 (time 1) and 62 (time 2). All were trauma-exposed prior to time 1. Brain volumes were assessed at time 2 using 3 T structural magnetic resonance imaging. Symptoms were correlated over time (r = 0.46 p < .0001). Higher PTS symptoms averaged over time and symptoms at time 1 were both associated with lower hippocampal, amygdala, rostral middle frontal gyrus (MFG), and medial orbitofrontal cortex (OFC) volumes, and a lower HOC ratio at time 2. Increased PTS symptomatology from time 1 to time 2 was associated with smaller hippocampal volume. Results for hippocampal, rostral MFG and medial OFC remained significant after omitting individuals above the threshold for PTSD diagnosis. Even at sub-diagnostic threshold levels, PTS symptoms were present decades after trauma exposure in parallel with highly correlated structural deficits in brain regions regulating stress responsivity and adaptation

    Enhancement of Psychosocial Treatment With D-Cycloserine: Models, Moderators, and Future Directions

    No full text
    Advances in the understanding of the neurobiology of fear extinction have resulted in the development of d-cycloserine (DCS), a partial glutamatergic N-methyl-D-aspartate agonist, as an augmentation strategy for exposure treatment. We review a decade of research that has focused on the efficacy of DCS for augmenting the mechanisms (e.g., fear extinction) and outcome of exposure treatment across the anxiety disorders. Following a series of small-scale studies offering strong support for this clinical application, more recent larger-scale studies have yielded mixed results, with some showing weak or no effects. We discuss possible explanations for the mixed findings, pointing to both patient and session (i.e., learning experiences) characteristics as possible moderators of efficacy, and offer directions for future research in this area. We also review recent studies that have aimed to extend the work on DCS augmentation of exposure therapy for the anxiety disorders to DCS enhancement of learning-based interventions for addiction, anorexia nervosa, schizophrenia, and depression. Here, we attend to both DCS effects on facilitating therapeutic outcomes and additional therapeutic mechanisms beyond fear extinction (e.g., appetitive extinction, hippocampal-dependent learning).F31 MH103969 - NIMH NIH HHS; K24 DA030443 - NIDA NIH HHS; R34 MH099309 - NIMH NIH HHS; R34 MH086668 - NIMH NIH HHS; R21 MH102646 - NIMH NIH HHS; R34 MH099318 - NIMH NIH HH

    The effects of physical activity on sleep: a meta-analytic review

    No full text
    corecore