565 research outputs found
Anti-phase locking in a two-dimensional Josephson junction array
We consider theoretically phase locking in a simple two-dimensional Josephson
junction array consisting of two loops coupled via a joint line transverse to
the bias current. Ring inductances are supposed to be small, and special
emphasis is taken on the influence of external flux. Is is shown, that in the
stable oscillation regime both cells oscillate with a phase shift equal to
(i.e. anti-phase). This result may explain the low radiation output
obtained so far in two-dimensional Josephson junction arrays experimentally.Comment: 11 pages, REVTeX, 1 Postscript figure, Subm. to Appl. Phys. Let
Critical Casimir Effect in 3He-4He films
Universal aspects of the thermodynamic Casimir effect in wetting films of
3He-4He mixtures near their bulk tricritical point are studied within suitable
models serving as representatives of the corresponding universality class. The
effective forces between the boundaries of such films arising from the
confinement are calculated along isotherms at several fixed concentrations of
3He. Nonsymmetric boundary conditions impose nontrivial concentration profiles
leading to repulsive Casimir forces which exhibit a rich behavior of the
crossover between the tricritical point and the line of critical points. The
theoretical results agree with published experimental data and emphasize the
importance of logarithmic corrections.Comment: 12 pages, 4 figures, submitted to the Phys. Rev. Let
Fluctuation force exerted by a planar self-avoiding polymer
Using results from Schramm Loewner evolution (SLE), we give the expression of
the fluctuation-induced force exerted by a polymer on a small impenetrable
disk, in various 2-dimensional domain geometries. We generalize to two polymers
and examine whether the fluctuation force can trap the object into a stable
equilibrium. We compute the force exerted on objects at the domain boundary,
and the force mediated by the polymer between such objects. The results can
straightforwardly be extended to any SLE interface, including Ising,
percolation, and loop-erased random walks. Some are relevant for extremal value
statistics.Comment: 7 pages, 22 figure
The coil-globule transition of confined polymers
We study long polymer chains in a poor solvent, confined to the space between
two parallel hard walls. The walls are energetically neutral and pose only a
geometric constraint which changes the properties of the coil-globule (or
"-") transition. We find that the temperature increases
monotonically with the width between the walls, in contrast to recent
claims in the literature. Put in a wider context, the problem can be seen as a
dimensional cross over in a tricritical point of a model. We roughly
verify the main scaling properties expected for such a phenomenon, but we find
also somewhat unexpected very long transients before the asymptotic scaling
regions are reached. In particular, instead of the expected scaling exactly at the (-dependent) theta point we found that increases
less fast than , even for extremely long chains.Comment: 5 pages, 6 figure
Theory of phase-locking in generalized hybrid Josephson junction arrays
A recently proposed scheme for the analytical treatment of the dynamics of
two-dimensional hybrid Josephson junction arrays is extended to a class of
generalized hybrid arrays with ''horizontal'' shunts involving a capacitive as
well as an inductive component. This class of arrays is of special interest,
because the internal cell coupling has been shown numerically to favor in-phase
synchronization for certain parameter values. As a result, we derive limits on
the circuit design parameters for realizing this state. In addition, we obtain
formulas for the flux-dependent frequency including flux-induced switching
processes between the in-phase and anti-phase oscillation regime. The treatment
covers unloaded arrays as well as arrays shunted via an external load.Comment: 24 pages, REVTeX, 5 Postscript figures, Subm. to Phys. Rev.
Influence of Capillary Condensation on the Near-Critical Solvation Force
We argue that in a fluid, or magnet, confined by adsorbing walls which favour
liquid, or (+) phase, the solvation (Casimir) force in the vicinity of the
critical point is strongly influenced by capillary condensation which occurs
below the bulk critical temperature T_c. At T slightly below and above T_c, a
small bulk field h<0, which favours gas, or (-) phase, leads to residual
condensation and a solvation force which is much more attractive (at the same
large wall separation) than that found exactly at the critical point. Our
predictions are supported by results obtained from density-matrix
renormalization-group calculations in a two-dimensional Ising strip subject to
identical surface fields.Comment: 4 Pages, RevTeX, and 3 figures include
THEORY OF PHASE-LOCKING IN SMALL JOSEPHSON JUNCTION CELLS
Within the RSJ model, we performed a theoretical analysis of phase-locking in
elementary strongly coupled Josephson junction cells. For this purpose, we
developed a systematic method allowing the investigation of phase-locking in
cells with small but non-vanishing loop inductance.The voltages across the
junctions are found to be locked with very small phase difference for almost
all values of external flux. However, the general behavior of phase-locking is
found to be just contrary to that according to weak coupling. In case of strong
coupling there is nearly no influence of external magnetic flux on the phases,
but the locking-frequency becomes flux-dependent. The influence of parameter
splitting is considered as well as the effect of small capacitive shunting of
the junctions. Strongly coupled cells show synchronization even for large
parameter splitting. Finally, a study of the behavior under external microwave
radiation shows that the frequency locking-range becomes strongly
flux-dependent, whereas the locking frequency itself turns out to be
flux-independent.Comment: 26 pages, REVTEX, 9 PS figures appended in uuencoded form at the end,
submitted to Phys. Rev. B
Local functional models of critical correlations in thin-films
Recent work on local functional theories of critical inhomogeneous fluids and
Ising-like magnets has shown them to be a potentially exact, or near exact,
description of universal finite-size effects associated with the excess
free-energy and scaling of one-point functions in critical thin films. This
approach is extended to predict the two-point correlation function G in
critical thin-films with symmetric surface fields in arbitrary dimension d. In
d=2 we show there is exact agreement with the predictions of conformal
invariance for the complete spectrum of correlation lengths as well as the
detailed position dependence of the asymptotic decay of G. In d=3 and d>=4 we
present new numerical predictions for the universal finite-size correlation
length and scaling functions determining the structure of G across the
thin-film. Highly accurate analytical closed form expressions for these
universal properties are derived in arbitrary dimension.Comment: 4 pages, 1 postscript figure. Submitted to Phys Rev Let
Perturbative calculation of the scaled factorial moments in second-order quark-hadron phase transition within the Ginzburg-Landau description
The scaled factorial moments are studied for a second-order
quark-hadron phase transition within the Ginzburg-Landau description. The role
played by the ground state of the system under low temperature is emphasized.
After a local shift of the order parameter the fluctuations are around the
ground state, and a perturbative calculation for can be carried out.
Power scaling between 's is shown, and a universal scaling exponent
is given for the case with weak correlations and weak
self-interactions.Comment: 12 pages in RevTeX, 12 eps figure
Critical Casimir effect and wetting by helium mixtures
We have measured the contact angle of the interface of phase-separated
He-He mixtures against a sapphire window. We have found that this
angle is finite and does not tend to zero when the temperature approaches
, the temperature of the tri-critical point. On the contrary, it increases
with temperature. This behavior is a remarkable exception to what is generally
observed near critical points, i.e. "critical point wetting''. We propose that
it is a consequence of the "critical Casimir effect'' which leads to an
effective attraction of the He-He interface by the sapphire near
.Comment: submitted july 13 (2002), published march 20 (2003
- …