38 research outputs found

    Pigmentary retinopathy can indicate the presence of pathogenic LAMP2 variants even in somatic mosaic carriers with no additional signs of Danon disease

    Get PDF
    PURPOSE: Danon disease (DD) is a rare X-linked disorder caused by pathogenic variants in LAMP2. DD primarily manifests as a severe cardiomyopathy. An early diagnosis is crucial for patient survival. The aim of the study was to determine the usefulness of ocular examination for identification of DD. METHODS: Detailed ocular examination in 10 patients with DD (3 males, 7 females) and a 45-year-old asymptomatic female somatic mosaic carrier of a LAMP2 disease-causing variant. RESULTS: All patients with manifest cardiomyopathy had pigmentary retinopathy with altered autofluorescence and diffuse visual field loss. Best corrected visual acuity (BCVA) was decreased (<0.63) in 8 (40%) out of 20 eyes. The severity of retinal pathology increased with age, resulting in marked cone-rod involvement overtime. Spectral-domain optical coherence tomography in younger patients revealed focal loss of photoreceptors, disruption and deposition at the retinal pigment epithelium/Bruch's membrane layer (corresponding to areas of marked increased autofluorescence), and hyperreflective foci in the outer nuclear layer. Cystoid macular oedema was seen in one eye. In the asymptomatic female with somatic mosaicism, the BCVA was 1.0 bilaterally. An abnormal autofluorescence pattern in the left eye was present; while full-field electroretinography was normal. CONCLUSIONS: Detailed ocular examination may represent a sensitive and quick screening tool for the identification of carriers of LAMP2 pathogenic variants, even in somatic mosaicism. Hence, further investigation should be undertaken in all patients with pigmentary retinal dystrophy as it may be a sign of a life-threatening disease

    Candidate gene resequencing in a large bicuspid aortic valve-associated thoracic aortic aneurysm cohort: SMAD6 as an important contributor

    Get PDF
    Bicuspid aortic valve (BAV) is the most common congenital heart defect. Although many BAV patients remain asymptomatic, at least 20% develop thoracic aortic aneurysm (TAA). Historically, BAV-related TAA was considered as a hemodynamic consequence of the valve defect. Multiple lines of evidence currently suggest that genetic determinants contribute to the pathogenesis of both BAV and TAA in affected individuals. Despite high heritability, only very few genes have been linked to BAV or BAV/TAA, such as NOTCH1, SMAD6, and MAT2A. Moreover, they only explain a minority of patients. Other candidate genes have been suggested based on the presence of BAV in knockout mouse models (e.g., GATA5, NOS3) or in syndromic (e.g., TGFBR1/2, TGFB2/3) or non-syndromic (e.g., ACTA2) TAA forms. We hypothesized that rare genetic variants in these genes may be enriched in patients presenting with both BAV and TAA. We performed targeted resequencing of 22 candidate genes using Haloplex target enrichment in a strictly defined BAV/TAA cohort (n = 441; BAV in addition to an aortic root or ascendens diameter = 4.0 cm in adults, or a Z-score = 3 in children) and in a collection of healthy controls with normal echocardiographic evaluation (n = 183). After additional burden analysis against the Exome Aggregation Consortium database, the strongest candidate susceptibility gene was SMAD6 (p = 0.002), with 2.5% (n = 11) of BAV/TAA patients harboring causal variants, including two nonsense, one in-frame deletion and two frameshift mutations. All six missense mutations were located in the functionally important MH1 and MH2 domains. In conclusion, we report a significant contribution of SMAD6 mutations to the etiology of the BAV/TAA phenotype

    Natural History of MYH7-Related Dilated Cardiomyopathy

    Get PDF
    BACKGROUND: Variants in myosin heavy chain 7 (MYH7) are responsible for disease in 1% to 5% of patients with dilated cardiomyopathy (DCM); however, the clinical characteristics and natural history of MYH7-related DCM are poorly described. OBJECTIVE: We sought to determine the phenotype and prognosis of MYH7-related DCM. We also evaluated the influence of variant location on phenotypic expression. METHODS: We studied clinical data from 147 individuals with DCM-causing MYH7 variants (47.6% female; 35.6 ± 19.2 years) recruited from 29 international centers. RESULTS: At initial evaluation, 106 (72.1%) patients had DCM (left ventricular ejection fraction: 34.5% ± 11.7%). Median follow-up was 4.5 years (IQR: 1.7-8.0 years), and 23.7% of carriers who were initially phenotype-negative developed DCM. Phenotypic expression by 40 and 60 years was 46% and 88%, respectively, with 18 patients (16%) first diagnosed at <18 years of age. Thirty-six percent of patients with DCM met imaging criteria for LV noncompaction. During follow-up, 28% showed left ventricular reverse remodeling. Incidence of adverse cardiac events among patients with DCM at 5 years was 11.6%, with 5 (4.6%) deaths caused by end-stage heart failure (ESHF) and 5 patients (4.6%) requiring heart transplantation. The major ventricular arrhythmia rate was low (1.0% and 2.1% at 5 years in patients with DCM and in those with LVEF of ≤35%, respectively). ESHF and major ventricular arrhythmia were significantly lower compared with LMNA-related DCM and similar to DCM caused by TTN truncating variants. CONCLUSIONS: MYH7-related DCM is characterized by early age of onset, high phenotypic expression, low left ventricular reverse remodeling, and frequent progression to ESHF. Heart failure complications predominate over ventricular arrhythmias, which are rare

    Natural History of MYH7-Related Dilated Cardiomyopathy

    Full text link
    BACKGROUND Variants in myosin heavy chain 7 (MYH7) are responsible for disease in 1% to 5% of patients with dilated cardiomyopathy (DCM); however, the clinical characteristics and natural history of MYH7-related DCM are poorly described. OBJECTIVES We sought to determine the phenotype and prognosis of MYH7-related DCM. We also evaluated the influence of variant location on phenotypic expression. METHODS We studied clinical data from 147 individuals with DCM-causing MYH7 variants (47.6% female; 35.6 +/- 19.2 years) recruited from 29 international centers. RESULTS At initial evaluation, 106 (72.1%) patients had DCM (left ventricular ejection fraction: 34.5% +/- 11.7%). Median follow-up was 4.5 years (IQR: 1.7-8.0 years), and 23.7% of carriers who were initially phenotype-negative developed DCM. Phenotypic expression by 40 and 60 years was 46% and 88%, respectively, with 18 patients (16%) first diagnosed at <18 years of age. Thirty-six percent of patients with DCM met imaging criteria for LV noncompaction. During follow-up, 28% showed left ventricular reverse remodeling. Incidence of adverse cardiac events among patients with DCM at 5 years was 11.6%, with 5 (4.6%) deaths caused by end-stage heart failure (ESHF) and 5 patients (4.6%) requiring heart transplantation. The major ventricular arrhythmia rate was low (1.0% and 2.1% at 5 years in patients with DCM and in those with LVEF of <= 35%, respectively). ESHF and major ventricular arrhythmia were significantly lower compared with LMNA-related DCM and similar to DCM caused by TTN truncating variants. CONCLUSIONS MYH7-related DCM is characterized by early age of onset, high phenotypic expression, low left ventricular reverse remodeling, and frequent progression to ESHF. Heart failure complications predominate over ventricular arrhythmias, which are rare. (C) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation

    Homozygosity mapping in a family with microcephaly, mental retardation, and short stature to a Cohen syndrome region on 8q21.3-8q22.1: Redefining a clinical entity

    No full text
    A syndrome of microcephaly, progressive postnatal growth deficiency, and mental retardation was observed in two brothers and their cousin from a multiply consanguineous kindred of Lebanese descent. Hypotonia, chorioretinal dystrophy, and myopia were also identified. The severity of the condition varied among the closely related patients. Because of absence of a distinctive facial appearance, the degree of mental retardation, and short stature, the initially considered clinical diagnosis of Cohen syndrome was withdrawn and a novel genetic entity was assumed. Homozygosity mapping in this family assigned the gene to a 26.8-cM region on the chromosome band 8q21.3 -22.1, between the microsatellites at D8S270 and D8S514. The maximum two-point LOD score was found for marker at D8S267 (Z(max)=3.237 at O(max)=0.00). Intriguingly enough, the identified gene region overlaps the refined gene region for Cohen syndrome (COH1) [Kolehmainen et al., 1997: Euro J Hum Genet 5:206213]. This fact encourages the hypothesis that the described kindred segregates for a variant of Cohen syndrome and suggests a redefinition of its phenotype

    Assignment of the gene for a new hereditary nail disorder, isolated congenital nail dysplasia, to chromosome 17p13

    Get PDF
    Isolated congenital nail dysplasia is an autosomal dominant disorder recently observed in a large family from southern Germany. The disorder is characterized by longitudinal streaks, thinning, and impaired formation of the nail plates leading to increased vulnerability of the free nail margins. In most cases, all fingernails and toenails are similarly involved with some accentuation of the thumb and great toenails. Histologic changes include hypergranulosis of the nail matrix and epithelial outgrowths from the nail bed. Patients do not show any alterations of hair growth and dentition, no malfunction of sweat glands and sensory organs, and no skeletal abnormalities. Isolated congenital nail dysplasia manifests from the first year of life with variable expressivity. In order to localize chromosomally the gene underlying isolated congenital nail dysplasia, linkage to the known keratin gene cluster regions on chromosomes 12q12 and 17q21 was ruled out first. The analysis of 150 microsatellite markers on various chromosomes mapped the isolated congenital nail dysplasia gene to the 6 cM interval between markers at D17S926 and D17S1528 on chromosome 17p13. Markers at D17S849, D17S1840, and D17S1529 co-segregated completely with the isolated congenital nail dysplasia locus. The maximum two-point LOD score was found for the marker at D17S1840 (Z(max) = 6.72 at Θ(max) = 0.00). The identified region harbors no currently known genes involved in skin or nail abnormalities. Isolated congenital nail dysplasia probably represents a novel isolated defect of nail development. The localization of this gene is, therefore, the first step towards the identification of a new factor in nail formation

    Homozygosity mapping of a second gene locus for hereditary combined deficiency of vitamin K-dependent clotting factors to the centromeric region of chromosome 16

    No full text
    Familial multiple coagulation factor deficiency (FMFD) of factors II, VII, IX, X, protein C, and protein S is a very rare bleeding disorder with autosomal recessive inheritance. The phenotypic presentation is variable with respect to the residual activities of the affected proteins, its response to oral administration of vitamin K, and to the involvement of skeletal abnormalities. The disease may result either from a defective resorption/transport of vitamin K to the liver, or from a mutation in one of the genes encoding {gamma}-carboxylase or other proteins of the vitamin K cycle. We have recently presented clinical details of a Lebanese family and a German family with 10 and 4 individuals, respectively, where we proposed autosomal recessive inheritance of the FMFD phenotype. Biochemical investigations of vitamin K components in patients' serum showed a significantly increased level of vitamin K epoxide, thus suggesting a defect in one of the subunits of the vitamin K 2,3-epoxide reductase (VKOR) complex. We now have performed a genome-wide linkage analysis and found significant linkage of FMFD to chromosome 16. A total maximum 2-point LOD score of 3.4 at 0 = 0 was obtained in the interval between markers D16S3131 on 16p12 and D16S419 on 16q21. In both families, patients were autozygous for 26 and 28 markers, respectively, in an interval of 3 centimorgans (cM). Assuming that FMFD and warfarin resistance are allelic, conserved synteny between human and mouse linkage groups would restrict the candidate gene interval to the centromeric region of the short arm of chromosome 16

    Baseline Doppler parameters are useful predictors of chronic left ventricular reduction in size by cardiac resynchronization therapy

    No full text
    Aims The identification of responders to cardiac resynchronization therapy (CRT) in patients with left ventricular (LV) dysfunction and left bundle branch block (LBBB) remains difficult. We aimed to define the predictive value of conventional Doppler parameters. Methods and results In 73 patients (65 +/- 9 years, 51 male, 36 ischaemic, 37 non-ischaemic cardiomyopathy, QRS 167 +/- 31 ms, LVEF 23 +/- 6%) with LBBB, a CRT device was implanted. LV pre-ejection interval (PEI), interventricular mechanical delay (IVMD), LV filling time (FT), and myocardial performance index (MPI) were assessed at baseline and on optimized CRT. Left ventricular end-diastolic diameter (EDD) was obtained at baseline and after 10.6 +/- 6.7 months. end-diastolic diameter diminished from 66.3 +/- 8.1 to 59.9 +/- 9.6 mm (P /=140 ms had a 82% accuracy to predict long-term LVEDD reduction (sensitivity 86%, specificity 67%, positive and negative predictive values 91 and 56%, respectively). Multivariate analysis solely revealed baseline LVPEI as predictor of LVEDD reduction. FT and MPI correlated only with their respective improvements. Conclusion Left ventricular pre-ejection interval and IVMD predict favourable LV remodelling on CRT. The additional application of tissue Doppler parameters may further increase specificity and negative predictive value
    corecore