8 research outputs found

    Effects of acute lying and sleep deprivation on metabolic and inflammatory responses of lactating dairy cows

    Get PDF
    Dairy cows that are restricted from lying down have a reduced ability to sleep. In other species, sleep loss is a key risk factor for disease, mediated by changes in metabolic and inflammatory responses. The cumulative effect of lying and sleep deprivation on cow health is unknown. The objective was to determine the effects of lying and sleep deprivation on metabolic and inflammatory responses of dairy cows. Data were collected from 8 multiparous and 4 primiparous lactating cows (199 +/- 44 d in milk, 77 +/- 30 d pregnant; mean +/- standard deviation) enrolled in a study using a crossover design. Each cow was exposed to 2 treatments meant to induce sleep loss: (1) human disturbance (imposed by researchers making noise or physical contact when the cow's posture suggested sleep) and (2) lying deprivation (imposed by a wooden grid placed on the pen floor). Cows experienced a 24-h baseline period (d - 1) followed by a 24-h treatment period (d 0), with a 12-d washout period between treatments. Baseline and treatment periods were imposed from 2100 to 2059 h. Cows were housed in individual pens during the acclimation period (d - 3 and - 2), d - 1, and d 0. Nonesterified fatty acid and glucose concentrations were measured at 0300, 0900, 1500, and 2059 h on d - 1 and 0. Proinflammatory cytokine mRNA [tumor necrosis factor (TNF), interleukin-1B (IL1B), and interleukin-6 (IL6)] abundance in whole-blood leukocytes, both nonstimulated and stimulated with lipopolysaccharide, were assessed at 2059 h on d -1 (end of baseline) and d 0 (end of treatment). Nonesterified fatty acids and glucose varied by time of day but were not affected by treatment or day. The abundances of TNF and IL1B from both stimulated and nonstimulated cells were higher following 24 h of lying deprivation (d 0) compared with baseline (d -1). Abundance of IL6 was increased in nonstimulated cells after lying deprivation compared with baseline. In contrast, human disturbance for 24 h did not alter TNF, IL1B, or IL6 abundance relative to baseline levels. These results suggest that a short period of lying deprivation generally increases inflammatory responses but not metabolic responses.Peer reviewe

    Forage Systems to Optimize Agronomic and Economic Performance in Organic Dairy Systems

    Get PDF
    Organic dairy production in the USA is growing, but most forage systems research focuses on conventional production practices. As a result, organic dairy producers have limited science-based information to assist with farm and livestock management. The objective of this project was to use a multi-faceted approach to determine the ideal species mixtures for organic dairy production as well as document forage quality, forage yield, soil characteristics, milk production and milk quality during the grazing season. The forages studied ranged from a single species monoculture to a four species mixture of warm and cool season grasses and legumes. Nine distinct forage systems were seeded into small plots at the University of Tennessee and University of Kentucky research farms using organic practices. These plots were monitored for three years for yield, quality, species composition, and soil characteristics. The four best performing forage systems were planted in small paddocks on organic dairy farms in Tennessee and Kentucky to evaluate forage yield, forage quality, seasonality of production, and suitability for on-farm milk production. The superior forage system was established on a 4 ha paddock and compared the existing forage system used by each of the dairy farms. These larger paddocks allowed continued measurements of forage yield and quality, as well as measurements of milk production, milk quality, and grazing behaviour of the animals. The information from this project is currently being incorporated into a total farm management system for organic dairy producers in the Southeastern USA
    corecore