14 research outputs found
Search for Axionlike and Scalar Particles with the NA64 Experiment
We carried out a model-independent search for light scalar (s) and
pseudoscalar axionlike (a) particles that couple to two photons by using the
high-energy CERN SPS H4 electron beam. The new particles, if they exist, could
be produced through the Primakoff effect in interactions of hard bremsstrahlung
photons generated by 100 GeV electrons in the NA64 active dump with virtual
photons provided by the nuclei of the dump. The a(s) would penetrate the
downstream HCAL module, serving as shielding, and would be observed either
through their decay in the rest of the HCAL detector or
as events with large missing energy if the a(s) decays downstream of the HCAL.
This method allows for the probing the a(s) parameter space, including those
from generic axion models, inaccessible to previous experiments. No evidence of
such processes has been found from the analysis of the data corresponding to
electrons on target allowing to set new limits on the
-coupling strength for a(s) masses below 55 MeV.Comment: This publication is dedicated to the memory of our colleague Danila
Tlisov. 7 pages, 5 figures, revised version accepted for publication in Phys.
Rev. Let
Improved exclusion limit for light dark matter from e+e- annihilation in NA64
The current most stringent constraints for the existence of sub-GeV dark matter coupling to Standard Model via a massive vector boson A′ were set by the NA64 experiment for the mass region mA′≲250 MeV, by analyzing data from the interaction of 2.84×1011 100-GeV electrons with an active thick target and searching for missing-energy events. In this work, by including A′ production via secondary positron annihilation with atomic electrons, we extend these limits in the 200-300 MeV region by almost an order of magnitude, touching for the first time the dark matter relic density constrained parameter combinations. Our new results demonstrate the power of the resonant annihilation process in missing energy dark-matter searches, paving the road to future dedicated e+ beam efforts
Search for Axionlike and Scalar Particles with the NA64 Experiment
We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as a shield, and would be observed either through their a(s)→γγ decay in the rest of the HCAL detector, or as events with a large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing of the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10^{11} electrons on target, allowing us to set new limits on the a(s)γγ-coupling strength for a(s) masses below 55 MeV
Search for pseudoscalar bosons decaying into e+e- pairs in the NA64 experiment at the CERN SPS
We report the results of a search for a light pseudoscalar particle a that couples to electrons and decays to e+e- performed using the high-energy CERN SPS H4 electron beam. If such light pseudoscalar exists, it could explain the ATOMKI anomaly (an excess of e+e- pairs in the nuclear transitions of Be8 and He4 nuclei at the invariant mass ≃17 MeV observed by the experiment at the 5 MV Van de Graaff accelerator at ATOMKI, Hungary). We used the NA64 data collected in the "visible mode"configuration with a total statistics corresponding to 8.4×1010 electrons on target (EOT) in 2017 and 2018. In order to increase sensitivity to small coupling parameter ϵ we also used the data collected in 2016-2018 in the "invisible mode"configuration of NA64 with a total statistics corresponding to 2.84×1011 EOT. The background and efficiency estimates for these two configurations were retained from our previous analyses searching for light vector bosons and axionlike particles (ALP) (the latter were assumed to couple predominantly to γ). In this work we recalculate the signal yields, which are different due to different cross section and lifetime of a pseudoscalar particle a, and perform a new statistical analysis. As a result, the region of the two dimensional parameter space ma-ϵ in the mass range from 1 to 17.1 MeV is excluded. At the mass of the central value of the ATOMKI anomaly (the first result obtained on the beryllium nucleus, 16.7 MeV) the values of ϵ in the range 2.1×10-4<ϵ<3.2×10-4 are excluded
Measurement of the intrinsic hadronic contamination in the NA64−e high-e+/e- purity beam at CERN
We present the measurement of the intrinsic hadronic contamination at the CERN SPS H4 beamline configured to transport electrons and positrons at 100 GeV/c. The analysis, performed using data collected by the NA64-e experiment in 2022, is based on calorimetric measurements, exploiting the different interaction mechanisms of electrons and hadrons in the NA64 detector. We determined the contamination by comparing the results obtained using the nominal electron/positron beamline configuration with those from a dedicated setup, in which only hadrons impinged on the detector. We also obtained an estimate of the relative protons, anti-protons and pions yield by exploiting the different absorption probabilities of these particles in matter. We cross-checked our results with a dedicated Monte Carlo simulation for the hadron production at the primary T2 target, finding a good agreement with the experimental measurements
Search for a Hypothetical 16.7 MeV Gauge Boson and Dark Photons in the NA64 Experiment at CERN
We report the first results on a direct search for a new 16.7 MeV boson (
X
) which could explain the anomalous excess of
e
+
e
−
pairs observed in the excited
8
Be
∗
nucleus decays. Because of its coupling to electrons, the
X
could be produced in the bremsstrahlung reaction
e
−
Z
→
e
−
Z
X
by a 100 GeV
e
−
beam incident on an active target in the NA64 experiment at the CERN Super Proton Synchrotron and observed through the subsequent decay into a
e
+
e
−
pair. With
5.4
×
10
10
electrons on target, no evidence for such decays was found, allowing us to set first limits on the
X
−
e
−
coupling in the range
1.3
×
10
−
4
≲
ε
e
≲
4.2
×
10
−
4
excluding part of the allowed parameter space. We also set new bounds on the mixing strength of photons with dark photons (
A
′
) from nonobservation of the decay
A
′
→
e
+
e
−
of the bremsstrahlung
A
′
with a mass
≲
23
 
 
Me
Recommended from our members
Results from the Baksan Experiment on Sterile Transitions (BEST).
The Baksan Experiment on Sterile Transitions (BEST) was designed to investigate the deficit of electron neutrinos ν_{e} observed in previous gallium-based radiochemical measurements with high-intensity neutrino sources, commonly referred to as the "gallium anomaly," which could be interpreted as evidence for oscillations between ν_{e} and sterile neutrino (ν_{s}) states. A 3.414-MCi ^{51}Cr ν_{e} source was placed at the center of two nested Ga volumes and measurements were made of the production of ^{71}Ge through the charged current reaction, ^{71}Ga(ν_{e},e^{-})^{71}Ge, at two average distances. The measured production rates for the inner and the outer targets, respectively, are [54.9_{-2.4}^{+2.5}(stat)±1.4(syst)] and [55.6_{-2.6}^{+2.7}(stat)±1.4(syst)] atoms of ^{71}Ge/d. The ratio (R) of the measured rate of ^{71}Ge production at each distance to the expected rate from the known cross section and experimental efficiencies are R_{in}=0.79±0.05 and R_{out}=0.77±0.05. The ratio of the outer to the inner result is 0.97±0.07, which is consistent with unity within uncertainty. The rates at each distance were found to be similar, but 20%-24% lower than expected, thus reaffirming the anomaly. These results are consistent with ν_{e}→ν_{s} oscillations with a relatively large Δm^{2} (>0.5  eV^{2}) and mixing sin^{2}2θ (≈0.4)