1,071 research outputs found

    Depinning exponents of the driven long-range elastic string

    Full text link
    We perform a high-precision calculation of the critical exponents for the long-range elastic string driven through quenched disorder at the depinning transition, at zero temperature. Large-scale simulations are used to avoid finite-size effects and to enable high precision. The roughness, growth, and velocity exponents are calculated independently, and the dynamic and correlation length exponents are derived. The critical exponents satisfy known scaling relations and agree well with analytical predictions.Comment: 6 pages, 5 figure

    A Rapid Dynamical Monte Carlo Algorithm for Glassy Systems

    Full text link
    In this paper we present a dynamical Monte Carlo algorithm which is applicable to systems satisfying a clustering condition: during the dynamical evolution the system is mostly trapped in deep local minima (as happens in glasses, pinning problems etc.). We compare the algorithm to the usual Monte Carlo algorithm, using as an example the Bernasconi model. In this model, a straightforward implementation of the algorithm gives an improvement of several orders of magnitude in computational speed with respect to a recent, already very efficient, implementation of the algorithm of Bortz, Kalos and Lebowitz.Comment: RevTex 7 pages + 4 figures (uuencoded) appended; LPS preprin

    Quantum Dimer Model on the triangular lattice: Semiclassical and variational approaches to vison dispersion and condensation

    Full text link
    After reviewing the concept of vison excitations in Z_2 dimer liquids, we study the liquid-crystal transition of the Quantum Dimer Model on the triangular lattice by means of a semiclassical spin-wave approximation to the dispersion of visons in the context of a "soft-dimer" version of the model. This approach captures some important qualitative features of the transition: continuous nature of the transition, linear dispersion at the critical point, and \sqrt{12}x\sqrt{12} symmetry-breaking pattern. In a second part, we present a variational calculation of the vison dispersion relation at the RK point which reproduces the qualitative shape of the dispersion relation and the order of magnitude of the gap. This approach provides a simple but reliable approximation of the vison wave functions at the RK point.Comment: 12 pages, 10 figures. v2: minor changes, to appear in Phys. Rev.

    Driven interfaces in random media at finite temperature : is there an anomalous zero-velocity phase at small external force ?

    Full text link
    The motion of driven interfaces in random media at finite temperature TT and small external force FF is usually described by a linear displacement hG(t)V(F,T)th_G(t) \sim V(F,T) t at large times, where the velocity vanishes according to the creep formula as V(F,T)eK(T)/FμV(F,T) \sim e^{-K(T)/F^{\mu}} for F0F \to 0. In this paper, we question this picture on the specific example of the directed polymer in a two dimensional random medium. We have recently shown (C. Monthus and T. Garel, arxiv:0802.2502) that its dynamics for F=0 can be analyzed in terms of a strong disorder renormalization procedure, where the distribution of renormalized barriers flows towards some "infinite disorder fixed point". In the present paper, we obtain that for small FF, this "infinite disorder fixed point" becomes a "strong disorder fixed point" with an exponential distribution of renormalized barriers. The corresponding distribution of trapping times then only decays as a power-law P(τ)1/τ1+αP(\tau) \sim 1/\tau^{1+\alpha}, where the exponent α(F,T)\alpha(F,T) vanishes as α(F,T)Fμ\alpha(F,T) \propto F^{\mu} as F0F \to 0. Our conclusion is that in the small force region α(F,T)<1\alpha(F,T)<1, the divergence of the averaged trapping time τˉ=+\bar{\tau}=+\infty induces strong non-self-averaging effects that invalidate the usual creep formula obtained by replacing all trapping times by the typical value. We find instead that the motion is only sub-linearly in time hG(t)tα(F,T)h_G(t) \sim t^{\alpha(F,T)}, i.e. the asymptotic velocity vanishes V=0. This analysis is confirmed by numerical simulations of a directed polymer with a metric constraint driven in a traps landscape. We moreover obtain that the roughness exponent, which is governed by the equilibrium value ζeq=2/3\zeta_{eq}=2/3 up to some large scale, becomes equal to ζ=1\zeta=1 at the largest scales.Comment: v3=final versio

    Event-chain Monte Carlo with factor fields

    Get PDF
    International audienceWe study the dynamics of one-dimensional (1D) interacting particles simulated with the event-chain Monte Carlo algorithm (ECMC). We argue that previous versions of the algorithm suffer from a mismatch in the factor potential between different particle pairs (factors) and show that in 1D models, this mismatch is overcome by factor fields. ECMC with factor fields is motivated, in 1D, for the harmonic model, and validated for the Lennard-Jones model as well as for hard spheres. In 1D particle systems with short-range interactions, autocorrelation times generally scale with the second power of the system size for reversible Monte Carlo dynamics, and with its first power for regular ECMC and for molecular-dynamics. We show, using numerical simulations, that they grow only with the square root of the systems size for ECMC with factor fields. Mixing times, which bound the time to reach equilibrium from an arbitrary initial configuration, grow with the first power of the system size

    Adding a Myers Term to the IIB Matrix Model

    Full text link
    We show that Yang-Mills matrix integrals remain convergent when a Myers term is added, and stay in the same topological class as the original model. It is possible to add a supersymmetric Myers term and this leaves the partition function invariant.Comment: 8 pages, v2 2 refs adde

    Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods

    Full text link
    We report large-scale computer simulations of the hard-disk system at high densities in the region of the melting transition. Our simulations reproduce the equation of state, previously obtained using the event-chain Monte Carlo algorithm, with a massively parallel implementation of the local Monte Carlo method and with event-driven molecular dynamics. We analyze the relative performance of these simulation methods to sample configuration space and approach equilibrium. Our results confirm the first-order nature of the melting phase transition in hard disks. Phase coexistence is visualized for individual configurations via the orientational order parameter field. The analysis of positional order confirms the existence of the hexatic phase.Comment: 9 pages, 8 figures, 2 table

    Molecular simulation from modern statistics: Continuous-time, continuous-space, exact

    Full text link
    In a world made of atoms, the computer simulation of molecular systems, such as proteins in water, plays an enormous role in science. Software packages that perform these computations have been developed for decades. In molecular simulation, Newton's equations of motion are discretized and long-range potentials are treated through cutoffs or spacial discretization, which all introduce approximations and artifacts that must be controlled algorithmically. Here, we introduce a paradigm for molecular simulation that is based on modern concepts in statistics and is rigorously free of discretizations, approximations, and cutoffs. Our demonstration software reaches a break-even point with traditional molecular simulation at high precision. We stress the promise of our paradigm as a gold standard for critical applications and as a future competitive approach to molecular simulation.Comment: 19 pages, 4 figures; 18 pages supplementary materials, 1 supplementary figur

    Coexistence of solutions in dynamical mean-field theory of the Mott transition

    Full text link
    In this paper, I discuss the finite-temperature metal-insulator transition of the paramagnetic Hubbard model within dynamical mean-field theory. I show that coexisting solutions, the hallmark of such a transition, can be obtained in a consistent way both from Quantum Monte Carlo (QMC) simulations and from the Exact Diagonalization method. I pay special attention to discretization errors within QMC. These errors explain why it is difficult to obtain the solutions by QMC close to the boundaries of the coexistence region.Comment: 3 pages, 2 figures, RevTe
    corecore