Molecular simulation from modern statistics: Continuous-time, continuous-space, exact

Abstract

In a world made of atoms, the computer simulation of molecular systems, such as proteins in water, plays an enormous role in science. Software packages that perform these computations have been developed for decades. In molecular simulation, Newton's equations of motion are discretized and long-range potentials are treated through cutoffs or spacial discretization, which all introduce approximations and artifacts that must be controlled algorithmically. Here, we introduce a paradigm for molecular simulation that is based on modern concepts in statistics and is rigorously free of discretizations, approximations, and cutoffs. Our demonstration software reaches a break-even point with traditional molecular simulation at high precision. We stress the promise of our paradigm as a gold standard for critical applications and as a future competitive approach to molecular simulation.Comment: 19 pages, 4 figures; 18 pages supplementary materials, 1 supplementary figur

    Similar works

    Full text

    thumbnail-image

    Available Versions