40 research outputs found

    Towards a novel computer-aided optimization of microreactors: Techno-economic evaluation of an immobilized enzyme system

    Get PDF
    Immobilized multi-enzyme cascades are increasingly used in microfluidic devices. In particular, their application in continuous flow reactors shows great potential, utilizing the benefits of reusability and control of the reaction conditions. However, capitalizing on this potential is challenging and requires detailed knowledge of the investigated system. Here, we show the application of computational methods for optimization with multi-level reactor design (MLRD) methodology based on the underlying physical and chemical processes. We optimize a stereoselective reduction of a diketone catalyzed by ketoreductase (Gre2) and Nicotinamidadenindinukleotidphosphat (NADPH) cofactor regeneration with glucose dehydrogenase (GDH). Both enzymes are separately immobilized on magnetic beads forming a packed bed within the microreactor. We derive optimal reactor feed concentrations and enzyme ratios for enhanced performance and a basic economic model in order to maximize the techno-economic performance (TEP) for the first reduction of 5-nitrononane-2,8-dione

    A Microstructured Cover Flow Mixer for Hydrothermal Synthesis of ZnO Nanoparticles in Supercritical Water

    Get PDF
    A microstructured cover flow mixer equipped with two cyclone structures was used for stable continuous hydrothermal synthesis of ZnO nanoparticles from Zn(NO3_3)2_2 and NaOH aqueous solutions in supercritical water. The effects of the NaOH/Zn(NO3_3)2_2 ratio, Zn(NO3_3)2_2 molality, and flow rate on Zn conversion, crystal structure, particle size, particle morphology, and mixer clogging were examined. The advantages of this mixer were identified by comparing with the results obtained using the same chemical conditions with tee-type, cross-type, and central collision-type mixers

    Measurements of Hydrogen Solubility in Nitrobenzene/Aniline Mixtures

    Get PDF
    Measurements of hydrogen solubility in various nitrobenzene-aniline mixtures were conducted in an autoclave reactor with a stirrer and control of temperature. The solubility of hydrogen was measured at 7 different values of temperature (30 °C, 40 °C, 50 °C, 90 °C, 130 °C, 170 °C, 210 °C, respectively), 3 values of stirrer rotation speed (1200 rpm, 1600 rpm, 2000 rpm, respectively) and a range of pressure of 20 ‒ 30 bar. Moreover, pure aniline, pure nitrobenzene and their mixtures with different concentrations were used. In the next step, values of Henry’s constant were calculated. Based on experimental data a dependence of Henry’s constant on temperature for pure aniline and pure nitrobenzene was proposed. Additionally, for each temperature correlations between Henry’s constant and aniline’s concentration in mixture of nitrobenzene-aniline were found

    Comprehensive Study of the Deformation Behavior during Diffusion Bonding of 1.4301 (AISI 304) as a Function of Material Width and Aspect Ratio

    Get PDF
    In this paper, the impact of material width as well as aspect ratio on deformation during diffusion bonding of layered samples were investigated. For this, six annular samples with a constant cross-sectional area but an increasing diameter and thus decreasing material width were designed. In a first set of experiments, specimens of a constant height of h = 20 mm were examined. Each sample consisted of 10 sheets, 2 mm in thickness each. Diffusion bonding was performed at T = 1075 °C, t = 4 h and p = 15 MPa. Subsequently, additional samples with a constant aspect ratio of about three but different material width were diffusion bonded. For this, additional layers were added. It was expected that the deformation should be nearly constant for a constant aspect ratio. However, comparing the deformation to a sample possessing an aspect ratio of about three from the first batch, a much higher deformation was obtained now. Bonding a third sample, a deformation in the same range as for the other two samples of the second batch was obtained. It was found that due to the evaporation of metals, the thermocouples were subjected to aging, which was proven indirectly by the evaluation of heating power. Since the diffusion coefficient of the metals follows an exponential law, deformation changes considerably with temperature. This emphasizes that exact temperature measurement is very important, especially for bonding microprocessor devices at constant contact pressure. The experiments showed that the deformation depends strongly on geometry. Bonding parameters cannot be generalized. For layered setups, the contribution that thickness tolerances from manufacturing and leveling of surface roughnesses of sheets add to the overall deformation cannot be reliably separated. After diffusion bonding, thickness tolerances increase with a lateral dimension. Obviously, the stiffness of the pressure dies is crucial

    Membranes for the Gas/Liquid Phase Separation at Elevated Temperatures: Characterization of the Liquid Entry Pressure

    Get PDF
    Hydrophobic membranes were characterized at elevated temperatures. Pressure was applied at the feed and permeate side to ensure liquid phase conditions. Within this scope, the applicability of different polymeric and ceramic membranes in terms of liquid entry pressure was studied using water. The Visual Method and the Pressure Step Method were applied for the experimental investigation. The results show the Pressure Step Method to be an early detection method. The tests at higher pressure and temperature conditions using the Pressure Step Method revealed the temperature as being the main factor affecting the liquid entry pressure. Novel LEP data up to 120 °C and 2.5 bar were obtained, which broadens the application range of hydrophobic membranes

    Local Heat Transfer Analysis in a Single Microchannel with Boiling DI-Water and Correlations with Impedance Local Sensors

    Get PDF
    Determination of local heat transfer coefficient at the interface of channel wall and fluid was the main goal of this experimental study in microchannel flow boiling domain. Flow boiling heat transfer to DI-water in a single microchannel with a rectangular cross section was experimentally investigated. The rectangular cross section dimensions of the experimented microchannel were 1050 μm × 500 μm and 1500 μm × 500 μm. Experiments under conditions of boiling were performed in a test setup, which allows the optical and local impedance measurements of the fluids by mass fluxes of 22.1 kg⋅m−2^{-2}⋅s−1^{-1} to 118.8 kg⋅m−2^{-2}⋅s−1^{-1} and heat fluxes in the range of 14.7 kW⋅m−2^{-2} to 116.54 kW⋅m−2^{-2}. The effect of the mass flux, heat flux, and flow pattern on flow boiling local heat transfer coefficient and pressure drop were investigated. Experimental data compared to existing correlations indicated no single correlation of good predictive value. This was concluded to be the case due to the instability of flow conditions on one hand and the variation of the flow regimes over the experimental conditions on the other hand. The results from the local impedance measurements in correlation to the optical measurements shows the flow regime variation at the experimental conditions. From these measurements, useful parameters for use in models on boiling like the 3-zone model were shown. It was shown that the sensing method can shed a precise light on unknown features locally in slug flow such as residence time of each phases, bubble frequency, and duty cycle

    Process Intensification in a Double-Pipe Reactor with Additively Manufactured Internal Inserts

    Get PDF
    The polycondensation reaction to produce polydextrose can be intensified by using micro-process engineering. Fluid Guiding Elements are additively manufactured internal inserts that have already shown their potential to intensify heat transfer in double-pipe heat exchangers. This study investigated the intensification of the polydextrose yield when these internal inserts were used. Different reactor lengths and internal inserts geometries, as well as different operating conditions, were analyzed. The experiments showed that the reactant concentration had no effect on the product yield. Furthermore, it was shown that the process could be intensified at higher temperatures, with relatively low residence times and lower pressures. It was confirmed that the good heat transfer characteristics of the internal inserts allow them to continuously evaporate water during the reaction and to further reach the required reaction temperature, thus shifting the equilibrium towards the desired product. These findings are of special significance for the optimization of the polycondensation reaction of polydextrose
    corecore