10 research outputs found

    PEAR, a flexible fluorescent reporter for the identification and enrichment of successfully prime edited cells

    Get PDF
    Prime editing is a recently developed CRISPR/Cas9 based gene engineering tool that allows the introduction of short insertions, deletions, and substitutions into the genome. However, the efficiency of prime editing, which typically achieves editing rates of around 10%-30%, has not matched its versatility. Here, we introduce the prime editor activity reporter (PEAR), a sensitive fluorescent tool for identifying single cells with prime editing activity. PEAR has no background fluorescence and specifically indicates prime editing events. Its design provides apparently unlimited flexibility for sequence variation along the entire length of the spacer sequence, making it uniquely suited for systematic investigation of sequence features that influence prime editing activity. The use of PEAR as an enrichment marker for prime editing can increase the edited population by up to 84%, thus significantly improving the applicability of prime editing for basic research and biotechnological applications

    A convenient method to pre-screen candidate guide RNAs for CRISPR/Cas9 gene editing by NHEJ-mediated integration of a 'self-cleaving' GFP-expression plasmid.

    Get PDF
    The efficacies of guide RNAs (gRNAs), the short RNA molecules that bind to and determine the sequence specificity of the Streptococcus pyogenes Cas9 nuclease, to mediate DNA cleavage vary dramatically. Thus, the selection of appropriate target sites, and hence spacer sequence, is critical for most applications. Here, we describe a simple, unparalleled method for experimentally pre-testing the efficiencies of various gRNAs targeting a gene. The method explores NHEJ-cloning, genomic integration of a GFP-expressing plasmid without homologous arms and linearized in-cell. The use of 'self- cleaving' GFP-plasmids containing universal gRNAs and corresponding targets alleviates cloning burdens when this method is applied. These universal gRNAs mediate efficient plasmid cleavage and are designed to avoid genomic targets in several model species. The method combines the advantages of the straightforward FACS detection provided by applying fluorescent reporter systems and of the PCR-based approaches being capable of testing targets in their genomic context, without necessitating any extra cloning steps. Additionally, we show that NHEJ-cloning can also be used in mammalian cells for targeted integration of donor plasmids up to 10 kb in size, with up to 30% efficiency, without any selection or enrichment

    Position-Dependent Sequence Motif Preferences of SpCas9 are Largely Determined by Scaffold-Complementary Spacer Motifs

    Get PDF
    Streptococcus pyogenes Cas9 (SpCas9) nuclease exhibits considerable position-dependent sequence preferences. The reason behind these preferences is not well understood and is difficult to rationalise, since the protein establishes interactions with the target-spacer duplex in a sequence-independent manner. We revealed here that intramolecular interactions within the single guide RNA (sgRNA), between the spacer and the scaffold, cause most of these preferences. By using in cellulo and in vitro SpCas9 activity assays with systematically designed spacer and scaffold sequences and by analysing activity data from a large SpCas9 sequence library, we show that some long (>8 nucleotides) spacer motifs, that are complementary to the RAR unit of the scaffold, interfere with sgRNA loading, and that some motifs of more than 4 nucleotides, that are complementary to the SL1 unit, inhibit DNA binding and cleavage. Furthermore, we show that intramolecular interactions are present in the majority of the inactive sgRNA sequences of the library, suggesting that they are the most important intrinsic determinants of the activity of the SpCas9 ribonucleoprotein complex. We also found that in pegRNAs, sequences at the 3′ extension of the sgRNA that are complementary to the SL2 unit are also inhibitory to prime editing, but not to the nuclease activity of SpCas9

    SuperFi-Cas9 Exhibits Remarkable Fidelity But Severely Reduced Activity Yet Works Effectively with ABE8e

    Get PDF
    Several advancements have been made to SpCas9, the most widely used CRISPR/Cas genome editing tool, to reduce its unwanted off-target effects. The most promising approach is the development of increased-fidelity nuclease (IFN) variants of SpCas9, however, their fidelity has increased at the cost of reduced activity. SuperFi-Cas9 has been developed recently, and it has been described as a next-generation high-fidelity SpCas9 variant, free from the drawbacks of first-generation IFNs. In this study, we characterize the on-target activity and the off-target propensity of SuperFi-Cas9 in mammalian cells, comparing it to first-generation IFNs. SuperFi-Cas9 demonstrates strongly reduced activity but high fidelity features that are in many aspects similar to those of some first-generation variants, such as evo- and HeFSpCas9. SuperFi-cytosine (CBE3) and -adenine (ABE7.10) base editors, as well as SuperFi-prime editor show no meaningful activity. When combined with ABE8e, SuperFi-Cas9, similarly to HeFSpCas9, executes DNA editing with high activity as well as high specificity reducing both bystander and SpCas9-dependent off-target base editing

    A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets

    No full text
    Abstract Streptococcus pyogenes Cas9 (SpCas9) has been employed as a genome engineering tool with a promising potential within therapeutics. However, its off-target effects present major safety concerns for applications requiring high specificity. Approaches developed to date to mitigate this effect, including any of the increased-fidelity (i.e., high-fidelity) SpCas9 variants, only provide efficient editing on a relatively small fraction of targets without detectable off-targets. Upon addressing this problem, we reveal a rather unexpected cleavability ranking of target sequences, and a cleavage rule that governs the on-target and off-target cleavage of increased-fidelity SpCas9 variants but not that of SpCas9-NG or xCas9. According to this rule, for each target, an optimal variant with matching fidelity must be identified for efficient cleavage without detectable off-target effects. Based on this insight, we develop here an extended set of variants, the CRISPRecise set, with increased fidelity spanning across a wide range, with differences in fidelity small enough to comprise an optimal variant for each target, regardless of its cleavability ranking. We demonstrate efficient editing with maximum specificity even on those targets that have not been possible in previous studies

    A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets

    No full text
    Streptococcus pyogenes Cas9 (SpCas9) has been employed as a genome engineering tool with a promising potential within therapeutics. However, its off-target effects present major safety concerns for applications requiring high specificity. Approaches developed to date to mitigate this effect, including any of the increased-fidelity (i.e., high-fidelity) SpCas9 variants, only provide efficient editing on a relatively small fraction of targets without detectable off-targets. Upon addressing this problem, we reveal a rather unexpected cleavability ranking of target sequences, and a cleavage rule that governs the on-target and off-target cleavage of increased-fidelity SpCas9 variants but not that of SpCas9-NG or xCas9. According to this rule, for each target, an optimal variant with matching fidelity must be identified for efficient cleavage without detectable off-target effects. Based on this insight, we develop here an extended set of variants, the CRISPRecise set, with increased fidelity spanning across a wide range, with differences in fidelity small enough to comprise an optimal variant for each target, regardless of its cleavability ranking. We demonstrate efficient editing with maximum specificity even on those targets that have not been possible in previous studies

    Variants in GCNA, X-linked germ-cell genome integrity gene, identified in men with primary spermatogenic failure

    No full text
    Free PMC article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266742/pdf/nihms-1705620.pdfGEMINI Consortium: Donald F Conrad, Liina Nagirnaja, Kenneth I Aston, Douglas T Carrell, James M Hotaling, Timothy G Jenkins, Rob McLachlan, Moira K O'Bryan, Peter N Schlegel, Michael L Eisenberg, Jay I Sandlow, Emily S Jungheim, Kenan R Omurtag, Alexandra M Lopes, Susana Seixas, Filipa Carvalho, Susana Fernandes, Alberto Barros, João Gonçalves, Iris Caetano, Graça Pinto, Sónia Correia, Maris Laan, Margus Punab, Ewa Rajpert-De Meyts, Niels Jørgensen, Kristian Almstrup, Csilla G Krausz, Keith A Jarvi.Member of GEMINI Consortium: João Gonçalves (INSA), lista completa na pág 1179.Male infertility impacts millions of couples yet, the etiology of primary infertility remains largely unknown. A critical element of successful spermatogenesis is maintenance of genome integrity. Here, we present a genomic study of spermatogenic failure (SPGF). Our initial analysis (n=176) did not reveal known gene-candidates but identifed a potentially signifcant single-nucleotide variant (SNV) in X-linked germ-cell nuclear antigen (GCNA). Together with a larger follow-up study (n=2049), 7 likely clinically relevant GCNA variants were identifed. GCNA is critical for genome integrity in male meiosis and knockout models exhibit impaired spermatogenesis and infertility. Single-cell RNA-seq and immunohistochemistry confrm human GCNA expression from spermatogonia to elongated spermatids. Five identifed SNVs were located in key functional regions, including N-terminal SUMO-interacting motif and C-terminal Spartan-like protease domain. Notably, variant p.Ala115ProfsTer7 results in an early frameshift, while Spartan-like domain missense variants p.Ser659Trp and p.Arg664Cys change conserved residues, likely afecting 3D structure. For variants within GCNA’s intrinsically disordered region, we performed computational modeling for consensus motifs. Two SNVs were predicted to impact the structure of these consensus motifs. All identifed variants have an extremely low minor allele frequency in the general population and 6 of 7 were not detected in>5000 biological fathers. Considering evidence from animal models, germ-cell-specifc expression, 3D modeling, and computational predictions for SNVs, we propose that identifed GCNA variants disrupt structure and function of the respective protein domains, ultimately arresting germ-cell division. To our knowledge, this is the frst study implicating GCNA, a key genome integrity factor, in human male infertility.This study was supported by The Eunice Kennedy Shriver NICHD Grant HD080755 (ANY), the Magee-Womens Research Institute University of Pittsburgh Start Up Fund (ANY), PA DoH Grant SAP4100085736 (ANY), NIH P50 Specialized Center Grant HD096723 (KO, ANY, DC, PNS, KH, and MBE), German Research Foundation Clinical Research Unit ‘Male Germ Cells’ grant DFG CRU326 (FT), National Science Centre in Poland, grants no.: 2017/26/D/NZ5/00789 (AM) and 2015/17/B/NZ2/01157; NCN 2020/37/B/NZ5/00549 (MK), Magee-Womens Research Institute University of Pittsburgh, Faculty Fellowship Award and NICHD T32 HD087194 (JH), GM125812 (MB), GM127569 (MB, JLY, and ANY), NIH R00H090289 (MABE), National Health and Medical Research Council Project grant APP1120356 (MKOB, JAV, and DC), UUKi Rutherford Fund Fellowship (BJH), Estonian Research Council, grants IUT34-12 and PRG1021 (ML), and The Netherlands Organization for Scientifc Research grant no.: 918-15-667 as well as an Investigator Award in Science from the Wellcome Trust grant no.: 209451 (JAV). Computational analysis was supported in part by the University of Pittsburgh Center for Research Computing through the resources provided.info:eu-repo/semantics/publishedVersio
    corecore