5,408 research outputs found

    Cloud-top meridional momentum transports on Saturn and Jupiter

    Get PDF
    Cloud-tracked wind measurements reported by Sromovsky et al. were analyzed to determine meridional momentum transports in Saturn's northern middle latitudes. Results are expressed in terms of eastward and northward velocity components (u and v), and eddy components u and v. At most latitudes between 13 and 44 deg N (planetocentric), the transport by the mean flow () is measurably southward, tending to support Saturn's large equatorial jet, and completely dominating the eddy transport. Meridional velocities are near zero at the peak of the relatively weak westward jet; along the flanks of that jet, measurements indicate divergent flow out of the jet. In this region the dominant eddy transport () is northward on the north side of the jet, but not resolvable on the south side. Eddy transports at most other latitudes are not significantly different from measurement error. The conversion of eddy kinetic energy to mean kinetic energy, indicated by the correlation between and d/dy (where y is meridional distance) is clearly smaller than various values reported for Jupiter, and not significantly different from zero. Both Jovian and Saturnian results may be biased by the tendency for cloud tracking to favor high contrast features, and thus may not be entirely representative of the cloud level motions as a whole

    Astrophysical factors:Zero energy vs. Most effective energy

    Get PDF
    Effective astrophysical factors for non-resonant astrophysical nuclear reaction are invariably calculated with respect to a zero energy limit. In the present work that limit is shown to be very disadvantageous compared to the more natural effective energy limit. The latter is used in order to modify the thermonuclear reaction rate formula so that it takes into account both plasma and laboratory screening effects.Comment: 7 RevTex pages. Accepted for publication in Phys.Rev.

    Simulations of Electron Acceleration at Collisionless Shocks: The Effects of Surface Fluctuations

    Get PDF
    Energetic electrons are a common feature of interplanetary shocks and planetary bow shocks, and they are invoked as a key component of models of nonthermal radio emission, such as solar radio bursts. A simulation study is carried out of electron acceleration for high Mach number, quasi-perpendicular shocks, typical of the shocks in the solar wind. Two dimensional self-consistent hybrid shock simulations provide the electric and magnetic fields in which test particle electrons are followed. A range of different shock types, shock normal angles, and injection energies are studied. When the Mach number is low, or the simulation configuration suppresses fluctuations along the magnetic field direction, the results agree with theory assuming magnetic moment conserving reflection (or Fast Fermi acceleration), with electron energy gains of a factor only 2 - 3. For high Mach number, with a realistic simulation configuration, the shock front has a dynamic rippled character. The corresponding electron energization is radically different: Energy spectra display: (1) considerably higher maximum energies than Fast Fermi acceleration; (2) a plateau, or shallow sloped region, at intermediate energies 2 - 5 times the injection energy; (3) power law fall off with increasing energy, for both upstream and downstream particles, with a slope decreasing as the shock normal angle approaches perpendicular; (4) sustained flux levels over a broader region of shock normal angle than for adiabatic reflection. All these features are in good qualitative agreement with observations, and show that dynamic structure in the shock surface at ion scales produces effective scattering and can be responsible for making high Mach number shocks effective sites for electron acceleration.Comment: 26 pages, 12 figure

    A gradient index metamaterial

    Full text link
    Metamaterials--artificially structured materials with tailored electromagnetic response--can be designed to have properties difficult to achieve with existing materials. Here we present a structured metamaterial, based on conducting split ring resonators (SRRs), which has an effective index-of-refraction with a constant spatial gradient. We experimentally confirm the gradient by measuring the deflection of a microwave beam by a planar slab of the composite metamaterial over a broad range of frequencies. The gradient index metamaterial represents an alternative approach to the development of gradient index lenses and similar optics that may be advantageous, especially at higher frequencies. In particular, the gradient index material we propose may be suited for terahertz applications, where the magnetic resonant response of SRRs has recently been demonstrated

    Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes

    Get PDF
    Surface recombination is an important characteristic of an optoelectronic material. Although surface recombination is a limiting factor for very small devices it has not been studied intensively. We have investigated surface recombination velocity on the exposed surfaces of the AlGaN, InGaAs, and InGaAlP material systems by using absolute photoluminescence quantum efficiency measurements. Two of these three material systems have low enough surface recombination velocity to be usable in nanoscale photonic crystal light-emitting diodes

    Applications of the AVE-Sesame data sets to mesoscale studies

    Get PDF
    Data collected by the lightning data concentrator are available for research. The Mark 3 McIDAS capability provides greater flexibility for the Marshall user community and serves as a model of future UW McIDAS to remote computer links. Techniques were investigated for the display of dynamic 3-D data sets. To date the most promising display technology is a polarized two CRT perspective display which allows both dynamic 3-D images and graphics presentations with full color capability. Algorithms were for the preparation and display of conventional and satellite based weather data in 3-D. These include gridding, contouring, and streamlining processors which operate on both real time and case study data bases. An upper air trajectory model was implemented which creates a display of air parcel trajectories in perspective 3-D. A subsystem for the generation of 3-D solid surface display with shading and hidden surface display with shading and hidden surface removal was tested and its products are currently being evaluated. Motion parallax introduced by moving the point of observation during display is an important depth cue, which, when added to the perspective parallax creates a very realistic appearing display

    Quantum Fermion Hair

    Full text link
    It is shown that the Dirac operator in the background of a magnetic %Reissner-Nordstr\"om black hole and a Euclidean vortex possesses normalizable zero modes in theories containing superconducting cosmic strings. One consequence of these zero modes is the presence of a fermion condensate around magnetically charged black holes which violates global quantum numbers.Comment: 16pp (harvmac (l)) and 2 figs.(not included

    Vitamin A potency of market milk

    Get PDF

    A Mini-survey of X-ray Point Sources in Starburst and Non-Starburst Galaxies

    Get PDF
    We present a comparison of X-ray point source luminosity functions of 3 starburst galaxies (the Antennae, M82, and NGC 253) and 4 non-starburst spiral galaxies (NGC 3184, NGC 1291, M83, and IC 5332). We find that the luminosity functions of the starbursts are flatter than those of the spiral galaxies; the starbursts have relatively more sources at high luminosities. This trend extends to early-type galaxies which have steeper luminosity functions than spirals. We show that the luminosity function slope is correlated with 60 micron luminosity, a measure of star formation. We suggest that the difference in luminosity functions is related to the age of the X-ray binary populations and present a simple model which highlights how the shape of the luminosity distribution is affected by the age of the underlying X-ray binary population.Comment: 8 pages, 4 figures. accepted for publication in Ap

    Atomic effects in astrophysical nuclear reactions

    Get PDF
    Two models are presented for the description of the electron screening effects that appear in laboratory nuclear reactions at astrophysical energies. The two-electron screening energy of the first model agrees very well with the recent LUNA experimental result for the break-up reaction He3(He3,2p)He4% He3(He3,2p)He^{4}, which so far defies all available theoretical models. Moreover, multi-electron effects that enhance laboratory reactions of the CNO cycle and other advanced nuclear burning stages, are also studied by means of the Thomas-Fermi model, deriving analytical formulae that establish a lower and upper limit for the associated screening energy. The results of the second model, which show a very satisfactory compatibility with the adiabatic approximation ones, are expected to be particularly useful in future experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production
    • …
    corecore