6,129 research outputs found

    Dark Energy and the Hubble Age

    Get PDF
    I point out that an effective upper limit of approximately 20 Gyr (for a Hubble constant of 72 km/s/Mpc) or alternatively on the H0H_0-independent quantity H0t0<1.47H_0t_0 < 1.47, exists on the age of the Universe, essentially independent of the unknown equation of state of the dominant dark energy component in the Universe. Unless astrophysical constraints on the age of the Universe can convincingly reduce the upper limit to below this value no useful lower limit on the equation of state parameter ww for this component can be obtained. Direct dating by stars does not provide a useful constraint, but model-dependent cosmological limits from supernovae and the CMB observations may. For a constant value of ww, a bound H0t0−1.5H_0t_0 -1.5Comment: 4 pages, submitted to Ap. J. Lett (analytic asymptotic upper bound now added

    Lepton flavor violation in low-scale seesaw models: SUSY and non-SUSY contributions

    Get PDF
    Taking the supersymmetric inverse seesaw mechanism as the explanation for neutrino oscillation data, we investigate charged lepton flavor violation in radiative and 3-body lepton decays as well as in neutrinoless μ−e\mu-e conversion in muonic atoms. In contrast to former studies, we take into account all possible contributions: supersymmetric as well as non-supersymmetric. We take CMSSM-like boundary conditions for the soft supersymmetry breaking parameters. We find several regions where cancellations between various contributions exist, reducing the lepton flavor violating rates by an order of magnitude compared to the case where only the dominant contribution is taken into account. This is in particular important for the correct interpretation of existing data as well as for estimating the reach of near future experiments where the sensitivity will be improved by one to two orders of magnitude. Moreover, we demonstrate that ratios like BR(τ→3μ\tau\to 3 \mu)/BR(τ→μe+e−\tau\to \mu e^+ e^-) can be used to determine whether the supersymmetric contributions dominate over the W±W^\pm and H±H^\pm contributions or vice versa.Comment: 75 pages, 7 figures. v3: references and comments added. Matches published versio

    The Cosmological Constant is Back

    Get PDF
    A diverse set of observations now compellingly suggest that Universe possesses a nonzero cosmological constant. In the context of quantum-field theory a cosmological constant corresponds to the energy density of the vacuum, and the wanted value for the cosmological constant corresponds to a very tiny vacuum energy density. We discuss future observational tests for a cosmological constant as well as the fundamental theoretical challenges---and opportunities---that this poses for particle physics and for extending our understanding of the evolution of the Universe back to the earliest moments.Comment: latex, 8 pages plus one ps figure available as separate compressed uuencoded fil

    Simulations of Electron Acceleration at Collisionless Shocks: The Effects of Surface Fluctuations

    Get PDF
    Energetic electrons are a common feature of interplanetary shocks and planetary bow shocks, and they are invoked as a key component of models of nonthermal radio emission, such as solar radio bursts. A simulation study is carried out of electron acceleration for high Mach number, quasi-perpendicular shocks, typical of the shocks in the solar wind. Two dimensional self-consistent hybrid shock simulations provide the electric and magnetic fields in which test particle electrons are followed. A range of different shock types, shock normal angles, and injection energies are studied. When the Mach number is low, or the simulation configuration suppresses fluctuations along the magnetic field direction, the results agree with theory assuming magnetic moment conserving reflection (or Fast Fermi acceleration), with electron energy gains of a factor only 2 - 3. For high Mach number, with a realistic simulation configuration, the shock front has a dynamic rippled character. The corresponding electron energization is radically different: Energy spectra display: (1) considerably higher maximum energies than Fast Fermi acceleration; (2) a plateau, or shallow sloped region, at intermediate energies 2 - 5 times the injection energy; (3) power law fall off with increasing energy, for both upstream and downstream particles, with a slope decreasing as the shock normal angle approaches perpendicular; (4) sustained flux levels over a broader region of shock normal angle than for adiabatic reflection. All these features are in good qualitative agreement with observations, and show that dynamic structure in the shock surface at ion scales produces effective scattering and can be responsible for making high Mach number shocks effective sites for electron acceleration.Comment: 26 pages, 12 figure

    Hysteresis phenomenon in deterministic traffic flows

    Full text link
    We study phase transitions of a system of particles on the one-dimensional integer lattice moving with constant acceleration, with a collision law respecting slower particles. This simple deterministic ``particle-hopping'' traffic flow model being a straightforward generalization to the well known Nagel-Schreckenberg model covers also a more recent slow-to-start model as a special case. The model has two distinct ergodic (unmixed) phases with two critical values. When traffic density is below the lowest critical value, the steady state of the model corresponds to the ``free-flowing'' (or ``gaseous'') phase. When the density exceeds the second critical value the model produces large, persistent, well-defined traffic jams, which correspond to the ``jammed'' (or ``liquid'') phase. Between the two critical values each of these phases may take place, which can be interpreted as an ``overcooled gas'' phase when a small perturbation can change drastically gas into liquid. Mathematical analysis is accomplished in part by the exact derivation of the life-time of individual traffic jams for a given configuration of particles.Comment: 22 pages, 6 figures, corrected and improved version, to appear in the Journal of Statistical Physic

    A Mini-survey of X-ray Point Sources in Starburst and Non-Starburst Galaxies

    Get PDF
    We present a comparison of X-ray point source luminosity functions of 3 starburst galaxies (the Antennae, M82, and NGC 253) and 4 non-starburst spiral galaxies (NGC 3184, NGC 1291, M83, and IC 5332). We find that the luminosity functions of the starbursts are flatter than those of the spiral galaxies; the starbursts have relatively more sources at high luminosities. This trend extends to early-type galaxies which have steeper luminosity functions than spirals. We show that the luminosity function slope is correlated with 60 micron luminosity, a measure of star formation. We suggest that the difference in luminosity functions is related to the age of the X-ray binary populations and present a simple model which highlights how the shape of the luminosity distribution is affected by the age of the underlying X-ray binary population.Comment: 8 pages, 4 figures. accepted for publication in Ap

    Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes

    Get PDF
    Surface recombination is an important characteristic of an optoelectronic material. Although surface recombination is a limiting factor for very small devices it has not been studied intensively. We have investigated surface recombination velocity on the exposed surfaces of the AlGaN, InGaAs, and InGaAlP material systems by using absolute photoluminescence quantum efficiency measurements. Two of these three material systems have low enough surface recombination velocity to be usable in nanoscale photonic crystal light-emitting diodes

    Astrophysical factors:Zero energy vs. Most effective energy

    Get PDF
    Effective astrophysical factors for non-resonant astrophysical nuclear reaction are invariably calculated with respect to a zero energy limit. In the present work that limit is shown to be very disadvantageous compared to the more natural effective energy limit. The latter is used in order to modify the thermonuclear reaction rate formula so that it takes into account both plasma and laboratory screening effects.Comment: 7 RevTex pages. Accepted for publication in Phys.Rev.
    • …
    corecore