22 research outputs found

    Lawsonia intracellularis exploits β-catenin/Wnt and Notch signalling pathways during infection of intestinal crypt to alter cell homeostasis and promote cell proliferation

    Get PDF
    Lawsonia intracellularis is an obligate intracellular bacterial pathogen that causes proliferative enteropathy (PE) in pigs. L. intracellularis infection causes extensive intestinal crypt cell proliferation and inhibits secretory and absorptive cell differentiation. However, the affected host upstream cellular pathways leading to PE are still unknown. β-catenin/Wnt signalling is essential in maintaining intestinal stem cell (ISC) proliferation and self-renewal capacity, while Notch signalling governs differentiation of secretory and absorptive lineage specification. Therefore, in this report we used immunofluorescence (IF) and quantitative reverse transcriptase PCR (RTqPCR) to examine β-catenin/Wnt and Notch-1 signalling levels in uninfected and L. intracellularis infected pig ileums at 3, 7, 14, 21 and 28 days post challenge (dpc). We found that while the significant increase in Ki67+ nuclei in crypts at the peak of L. intracellularis infection suggested enhanced cell proliferation, the expression of c-MYC and ASCL2, promoters of cell growth and ISC proliferation respectively, was down-regulated. Peak infection also coincided with enhanced cytosolic and membrane-associated β-catenin staining and induction of AXIN2 and SOX9 transcripts, both encoding negative regulators of β-catenin/Wnt signalling and suggesting a potential alteration to β-catenin/Wnt signalling levels, with differential regulation of the expression of its target genes. We found that induction of HES1 and OLFM4 and the down-regulation of ATOH1 transcript levels was consistent with the increased Notch-1 signalling in crypts at the peak of infection. Interestingly, the significant down-regulation of ATOH1 transcript levels coincided with the depletion of MUC2 expression at 14 dpc, consistent with the role of ATOH1 in promoting goblet cell maturation. The lack of significant change to LGR5 transcript levels at the peak of infection suggested that the crypt hyperplasia was not due to the expansion of ISC population. Overall, simultaneous induction of Notch-1 signalling and the attenuation of β-catenin/Wnt pathway appear to be associated with the inhibition of goblet cell maturation and enhanced crypt cell proliferation at the peak of L. intracellularis infection. Moreover, the apparent differential regulation of apoptosis between crypt and lumen cells together with the strong induction of Notch-1 signalling and the enhanced SOX9 expression along crypts 14 dpc suggest an expansion of actively dividing transit amplifying and/or absorptive progenitor cells and provide a potential basis for understanding the development and maintenance of PE

    Biodegradation of dichloromethane in an estuarine environment

    No full text
    Dichloromethane (DCM) is a toxic pollutant showing prolonged persistence in water. So far, biodegradation of DCM has only been reported in soils and freshwater systems. Herein, we studied whether or not biodegradation of DCM could occur in estuarine waters. Results showed over 90% mineralization of DCM in natural estuarine waters supplemented with DCM. Biodegradation of DCM in estuarine waters occurred by association of different bacterial species. Generally, two bacterial species participated in DCM degradation. Two bacterial consortia were obtained. Consortia were able to degrade around 80% of DCM in about 6 days. The species involved in the process were identified by 16S rRNA gene sequencing; a consortium was constituted by Pseudomonas sp. and Brevundimonas sp. and a second consortium was formed by Pseudomonas sp. and an Acinetobacter sp. Our results showed that DCM can be readily biodegraded in estuarine waters.Peer Reviewe

    Bacterial degradation of dichloromethane in cultures and natural environments

    No full text
    Dichloromethane (DCM) is a toxic pollutant showing prolonged persistence in water. DCM biodegradation is usually determined from increases in Cl ions, gas chromatography, or by using radioisotopes. Herein, we present an original and easy spectrophotometric method to estimate DCM concentrations in cultures and environmental samples during DCM biodegradation experiments.Valentina I. Krausova acknowledges her support from a Fulbright fellowship to perform her work at the Center of Marine Biotechnology. Frank T. Robb and Juan M. González were supported in part by an NSF LEXEN grant. Juan M. Gonza´lez is supported by grants from the Spanish Ministry of Science and Technology (Ramón y Cajal Program and REN2002- 00041/GLO).Peer Reviewe
    corecore