77 research outputs found

    The relationship of telomere length to baseline corticosterone levels in nestlings of an altricial passerine bird in natural populations.

    Get PDF
    BackgroundEnvironmental stressors increase the secretion of glucocorticoids that in turn can shorten telomeres via oxidative damage. Modification of telomere length, as a result of adversity faced early in life, can modify an individual's phenotype. Studies in captivity have suggested a relationship between glucocorticoids and telomere length in developing individuals, however less is known about that relationship in natural populations.MethodsIn order to evaluate the effect of early environmental stressors on telomere length in natural populations, we compared baseline corticosterone (CORT) levels and telomere length in nestlings of the same age. We collected blood samples for hormone assay and telomere determination from two geographically distinct populations of the Thorn-tailed Rayadito (Aphrastura spinicauda) that differed in brood size; nestlings body mass and primary productivity. Within each population we used path analysis to evaluate the relationship between brood size, body mass, baseline CORT and telomere length.ResultsWithin each distinct population, path coefficients showed a positive relationship between brood size and baseline CORT and a strong and negative correlation between baseline CORT and telomere length. In general, nestlings that presented higher baseline CORT levels tended to present shorter telomeres. When comparing populations it was the low latitude population that presented higher levels of baseline CORT and shorter telomere length.ConclusionsTaken together our results reveal the importance of the condition experienced early in life in affecting telomere length, and the relevance of integrative studies carried out in natural conditions

    RNA interference of gonadotropin-inhibitory hormone gene induces arousal in songbirds.

    Get PDF
    Gonadotropin-inhibitory hormone (GnIH) was originally identified in quail as a hypothalamic neuropeptide inhibitor of pituitary gonadotropin synthesis and release. However, GnIH neuronal fibers do not only terminate in the median eminence to control anterior pituitary function but also extend widely in the brain, suggesting it has multiple roles in the regulation of behavior. To identify the role of GnIH neurons in the regulation of behavior, we investigated the effect of RNA interference (RNAi) of the GnIH gene on the behavior of white-crowned sparrows, a highly social songbird species. Administration of small interfering RNA against GnIH precursor mRNA into the third ventricle of male and female birds reduced resting time, spontaneous production of complex vocalizations, and stimulated brief agonistic vocalizations. GnIH RNAi further enhanced song production of short duration in male birds when they were challenged by playbacks of novel male songs. These behaviors resembled those of breeding birds during territorial defense. The overall results suggest that GnIH gene silencing induces arousal. In addition, the activities of male and female birds were negatively correlated with GnIH mRNA expression in the paraventricular nucleus. Density of GnIH neuronal fibers in the ventral tegmental area was decreased by GnIH RNAi treatment in female birds, and the number of gonadotropin-releasing hormone neurons that received close appositions of GnIH neuronal fiber terminals was negatively correlated with the activity of male birds. In summary, GnIH may decrease arousal level resulting in the inhibition of specific motivated behavior such as in reproductive contexts

    Migration pattern of Gambel’s White-crowned Sparrow along the Pacific Flyway

    Get PDF
    White-crowned Sparrow (Zonotrichia leucophrys) populations of western North America exhibit dramatic differences in life history strategies including migration behavior. However, individual migration strategies and population-level migratory patterns remain largely unknown for this species. Here, we focused on the long-distance migratory subspecies, Gambel’s White-crowned Sparrow (Zonotrichia leucophrys gambelii). We used ringing, tracking and stable hydrogen isotope (δ2H) analysis of individuals migrating along the Pacific Flyway to assess individual phenology and routes as well as the pattern of connectivity between breeding and non-breeding sites. Results from all three methods, consisting of 79 ring recoveries, four light level geolocator tracks and 388 feather δ2H values, indicate low degrees of migratory connectivity. The isotope data provide evidence for leapfrog migration with the more southerly populations traveling greater distances to the breeding grounds than more centrally wintering individuals. Location estimates of four annual journeys revealed individually consistent migration strategies with relatively short flight bouts separated by two to three and two to six stopover sites during spring and autumn migration, respectively. However, combined results from all methods indicate high variability in migration distance among individuals. These findings confirm the phenotypic flexibility observed within this species and highlight the potential of White-crowned Sparrows for further investigations of evolutionary adaptations to ongoing changes in the environment

    How birds cope physiologically and behaviourally with extreme climatic events

    Get PDF
    As global climate change progresses, the occurrence of potentially disruptiveclimatic events such as storms are increasing in frequency, duration and inten-sity resulting in higher mortality and reduced reproductive success. Whatconstitutes an extreme climatic event? First we point out that extreme climaticevents in biological contexts can occur in any environment. Focusing on fieldand laboratory data on wild birds we propose a mechanistic approach to defin-ing and investigating what extreme climatic events are and how animals copewith them at physiological and behavioural levels. The life cycle of birds ismade up of life-history stages such as migration, breeding and moult thatevolved to match a range of environmental conditions an individual mightexpect during the year. When environmental conditions deteriorate anddeviate from the expected range then the individual must trigger copingmechanisms (emergency life-history stage) that will disrupt the temporal pro-gression of life-history stages, but enhance survival. Using the framework ofallostasis, we argue that an extreme climatic event in biological contexts canbe defined as when the cumulative resources available to an individual areexceeded by the sum of its energetic costs—a state called allostatic overload.This allostatic overload triggers the emergency life-history stage that tempor-arily allows the individual to cease regular activities in an attempt to surviveextreme conditions. We propose that glucocorticoid hormones play a majorrole in orchestrating coping mechanisms and are critical for enduring extremeclimatic events.This article is part of the themed issue ‘Behavioural, ecological andevolutionary responses to extreme climatic events’

    Late-season snowfall is associated with decreased offspring survival in two migratory arctic-breeding songbird species

    Get PDF
    While the effect of weather on reproduction has been studied for many years in avian taxa, the rapid pace of climate change in arctic regions has added urgency to this question by changing the weather conditions species experience during breeding. Given this, it is important to understand how factors such as temperature, rain, snowfall, and wind affect reproduction both directly and indirectly (e.g. through their effects on food availability). In this study, we ask how weather factors and food availability influence daily survival rates of clutches in two arctic-breeding migratory songbirds: the Lapland longspur Calcarius lapponicus , a circumpolar breeder, and Gambel’s white-crowned sparrow Zonotrichia leucophrys gambelii , which breeds in shrubby habitats across tundra, boreal and continental climates. To do this, we monitored clutch survival in these two species from egg-lay through fledge at field sites located near Toolik Field Station (North Slope, Alaska) across 5 yr (2012–2016). Our results indicate that snowfall and cold temperatures decreased offspring survival rates in both species; although Lapland longspurs were more susceptible to snowfall. Food availability, quantified by pitfall sampling and sweep-net sampling methods, had minimal effects on offspring survival. Some climate models predict increased precipitation for the Arctic with global warming, and in the Toolik region, total snow accumulation may be increasing. Placed in this context, our results suggest that changes in snow storms with climate change could have substantial consequences for reproduction in migratory songbirds breeding in the North American Arctic

    Social information changes stress hormone receptor expression in the songbird brain

    Get PDF
    Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a “stress” hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes
    corecore