15,605 research outputs found

    Method and device for determining battery state of charge Patent

    Get PDF
    Indicator device for monitoring charge of wet cell battery, using semiconductor light emitter and photodetecto

    Acceleration of cosmic rays and gamma-ray emission from supernova remnant/molecular cloud associations

    Get PDF
    The gamma-ray observations of molecular clouds associated with supernova remnants are considered one of the most promising ways to search for a solution of the problem of cosmic ray origin. Here we briefly review the status of the field, with particular emphasis on the theoretical and phenomenological aspects of the problem.Comment: Invited talk at SUGAR201

    On cross-beam monitoring of atmospheric winds and turbulence with two orbiting telescopes

    Get PDF
    Crossed beam monitoring of atmospheric winds and turbulence with two orbiting astronomical telescopes mounted on single spacecraf

    Probing gaseous halos of galaxies with radio jets

    Get PDF
    Reproduced with permission from Astronomy & Astrophysics. © 2019 ESOContext. Gaseous halos play a key role in understanding inflow, feedback, and the overall baryon budget in galaxies. Literature models predict transitions of the state of the gaseous halo between cold and hot accretion, winds, fountains, and hydrostatic halos at certain galaxy masses. Since luminosities of radio AGN are sensitive to halo densities, any significant transition would be expected to show up in the radio luminosities of large samples of galaxies. The LOw Frequency ARray (LOFAR) Two-Metre Sky Survey (LoTSS) has identified a galaxy stellar mass scale, 10 11 M ⊙, above which the radio luminosities increase disproportionately. Aims. We investigate if radio luminosities of galaxies, especially the marked rise at galaxy masses around 10 11 M ⊙, can be explained with standard assumptions regarding jet powers, scaling between black hole mass and galaxy mass, and gaseous halos. Methods. Based on observational data and theoretical constraints, we developed models for the radio luminosity of radio AGN in halos under infall, galactic wind, and hydrostatic conditions. We compared these models to LoTSS data for a large sample of galaxies in the mass range between 10 8.5 M ⊙ and 10 12 M ⊙. Results. Under the assumption that the same characteristic upper limit to jet powers known from high galaxy masses holds at all masses, we find the maximum radio luminosities for the hydrostatic gas halos to lie close to the upper envelope of the distribution of the LOFAR data. The marked rise in radio luminosity at 10 11 M ⊙ is matched in our model and is related to a significant change in halo gas density around this galaxy mass, which is a consequence of lower cooling rates at a higher virial temperature. Wind and infall models overpredict the radio luminosities for small galaxy masses and have no particular steepening of the run of the radio luminosities predicted at any galaxy mass. Conclusions. Radio AGN could have the same characteristic Eddington-scaled upper limit to jet powers in galaxies of all masses in the sample if the galaxies have hydrostatic gas halos in phases when radio AGN are active. We find no evidence of a change of the type of galaxy halo with the galaxy mass. Galactic winds and quasi-spherical cosmological inflow phases cannot frequently occur at the same time as powerful jet episodes unless the jet properties in these phases are significantly different from what we assumed in our model.Peer reviewedFinal Accepted Versio

    Functional specialization of the yeast Rho1 GTP exchange factors

    Get PDF
    Rho GTPases are regulated in complex spatiotemporal patterns that may be dependent, in part at least, on the multiplicity of their GTP exchange factors (GEFs). Here, we examine the extent of and basis for functional specialization of the Rom2 and Tus1 GEFs that activate the yeast Rho1 GTPase, the ortholog of mammalian RhoA. First, we find that these GEFs selectively activate different Rho1-effector branches. Second, the synthetic genetic networks around ROM2 and TUS1 confirm very different global in vivo roles for these GEFs. Third, the GEFs are not functionally interchangeable: Tus1 cannot replace the essential role of Rom2, even when overexpressed. Fourth, we find that Rom2 and Tus1 localize differently: Rom2 to the growing bud surface and to the bud neck at cytokinesis; Tus1 only to the bud neck but in a distinct pattern. Finally, we find that these GEFs are dependent on different protein co-factors: Rom2 function and localization is largely dependent on Ack1, a SEL1 domain containing protein; Tus1 function and localization is largely dependent on the Tus1-interacting protein Ypl066w (which we name Rgl1). We have revealed a surprising level of diversity among the Rho1 GEFs that contributes another level of complexity to the spatiotemporal control of Rho1

    Substrate effects on surface magetetism of Fe/W(110) from first principles

    Full text link
    Surface magnetic properties of the pseudomorphic Fe(110) monolayer on a W(110) substrate are investigated from first principles as a function of the substrate thickness (up to eight layers). Analyzing the magnetocrystalline anisotropy energies, we find stable (with respect to the number of substrate layers) in-plane easy and hard axes of magnetization along the [1[overline 1]0] and [001] directions, respectively, reaching a value in good agreement with experiment for thick substrates. Additionally, the changes to the magnetic spin moments and the density of the Fe d states are analyzed with respect to the number of substrate layers as well as with respect to the direction of magnetization. With respect to the number of W(110) substrate layers beneath the Fe(110) surface, we find that the first four substrate layers have a large influence on the electronic and magnetic properties of the surface. Beyond the fourth layer, the substrate has only marginal influence on the surface properties.Comment: 8 Pages, 3 Figures, 3 Table
    • …
    corecore