294 research outputs found

    Time evolution of intrinsic alignments of galaxies

    Get PDF
    Intrinsic alignments (IA), correlations between the intrinsic shapes and orientations of galaxies on the sky, are both a significant systematic in weak lensing and a probe of the effect of large-scale structure on galactic structure and angular momentum. In the era of precision cosmology, it is thus especially important to model IA with high accuracy. Efforts to use cosmological perturbation theory to model the dependence of IA on the large-scale structure have thus far been relatively successful; however, extant models do not consistently account for time evolution. In particular, advection of galaxies due to peculiar velocities alters the impact of IA, because galaxy positions when observed are generally different from their positions at the epoch when IA is believed to be set. In this work, we evolve the galaxy IA from the time of galaxy formation to the time at which they are observed, including the effects of this advection, and show how this process naturally leads to a dependence of IA on the velocity shear. We calculate the galaxy-galaxy-IA bispectrum to tree level (in the linear matter density) in terms of the evolved IA coefficients. We then discuss the implications for weak lensing systematics as well as for studies of galaxy formation and evolution. We find that considering advection introduces nonlocality into the bispectrum, and that the degree of nonlocality represents the memory of a galaxy's path from the time of its formation to the time of observation. We discuss how this result can be used to constrain the redshift at which IA is determined and provide Fisher estimation for the relevant measurements using the example of SDSS-BOSS.Comment: 30 pages, 5 figures, 2 table

    First measurement of gravitational lensing by cosmic voids in SDSS

    Full text link
    We report the first measurement of the diminutive lensing signal arising from matter underdensities associated with cosmic voids. While undetectable individually, by stacking the weak gravitational shear estimates around 901 voids detected in SDSS DR7 by Sutter et al. (2012a), we find substantial evidence for a depression of the lensing signal compared to the cosmic mean. This depression is most pronounced at the void radius, in agreement with analytical models of void matter profiles. Even with the largest void sample and imaging survey available today, we cannot put useful constraints on the radial dark-matter void profile. We invite independent investigations of our findings by releasing data and analysis code to the public at https://github.com/pmelchior/void-lensingComment: 6 pages, 5 figures, as accepted by MNRA

    Accurate cosmic shear errors: do we need ensembles of simulations?

    Get PDF
    Accurate inference of cosmology from weak lensing shear requires an accurate shear power spectrum covariance matrix. Here, we investigate this accuracy requirement and quantify the relative importance of the Gaussian (G), super-sample covariance (SSC) and connected non-Gaussian (cNG) contributions to the covariance. Specifically, we forecast cosmological parameter constraints for future wide-field surveys and study how different covariance matrix components affect parameter bounds. Our main result is that the cNG term represents only a small and potentially negligible contribution to statistical parameter errors: the errors obtained using the G+SSC subset are within lesssim 5% of those obtained with the full G+SSC+cNG matrix for a Euclid-like survey. This result also holds for the shear two-point correlation function, variations in survey specifications and for different analytical prescriptions of the cNG term. The cNG term is that which is often tackled using numerically expensive ensembles of survey realizations. Our results suggest however that the accuracy of analytical or approximate numerical methods to compute the cNG term is likely to be sufficient for cosmic shear inference from the next generation of surveys
    corecore