156 research outputs found

    Epigenetic Programming of Cardiovascular Disease by Perinatal Hypoxia and Fetal Growth Restriction

    Get PDF
    Most of the worldwide deaths in patients with non-communicable diseases are due to cardiovascular and metabolic diseases, which are determined by a mix of environmental, genetic and epigenetic factors, and by their interactions. The aetiology of most cardiovascular diseases has been partially linked with in utero adverse conditions that may increase the risk of developing diseases later in life, known as Developmental Origins of Health and Disease (DOHaD). Perinatal hypoxia can program the fetal and postnatal developmental patterns, resulting in permanent modifications of cells, organs and systems function. In spite of the vast evidence obtained from human and animal studies linking development under adverse intrauterine conditions with increased cardiovascular risk, still few is known about the specific effects of intrauterine oxygen deficiency and the related pathogenic mechanisms. Currently, the most accepted processes that program cellular function are epigenetic mechanisms which determine gene expression in a cell-specific fashion. In this chapter we will review the current literature regarding the perinatal exposure to chronic hypoxia and Fetal Growth Restriction (FGR) in humans and animals and how this impinges the cardiovascular physiology through epigenetic, biochemical, morphologic and pathophysiologic modifications that translate into diseases blasting at postnatal life

    Epigenética y obesidad

    Get PDF
    ResumenLa evidencia indica que la exposición a diversas condiciones ambientales en etapas tempranas de la vida puede inducir alteraciones persistentes en el epigenoma. Los estudios epigenómicos en sujetos obesos han permitido evaluar el papel de los mecanismos epigenéticos en el origen y desarrollo de la obesidad. La presente revisión aborda estudios que dan cuenta de la asociación entre la obesidad y metilación global del genoma (ADN), analizando el potencial impacto de intervenciones previas y posteriores al nacimiento que afectan la metilación del ADN y la obesidad en etapas más avanzadas de la vida. Estudios realizados principalmente en leucocitos, han logrado identificar sitios del ADN diferencialmente metilados asociados con obesidad. Estudios hasta la fecha no han demostrado que dichos cambios en metilación sean revertidos luego de bajar de peso. Esto contrasta con resultados iniciales en este campo, que sugieren que existirían marcadores epigenéticos presentes desde el nacimiento que permitirían definir el riesgo de obesidad durante el curso de la vida. La evidencia actual sugiere que algunas marcas epigenéticas son modificables, basándonos en la exposición en la vida intrauterina y también por los hábitos dietarios y de actividad fisica durante las etapas del crecimiento y en la adultez. Esto sugiere que existe la oportunidad de intervenir durante la gestación o en la vida posnatal temprana, que modificaría los perfiles epigenéticos desfavorables e idealmente contribuiría a prevenir la obesidad en los sujetos o poblaciones susceptibles.AbstractCurrent evidence supports the notion that exposure to various environmental conditions in early life may induce permanent changes in the epigenome that persist throughout the life-course. This article focuses on early changes associated with obesity in adult life. A review is presented on the factors that induce changes in whole genome (DNA) methylation in early life that are associated with adult onset obesity and related disorders. In contrast, reversal of epigenetic changes associated with weight loss in obese subjects has not been demonstrated. This contrasts with well-established associations found between obesity related DNA methylation patterns at birth and adult onset obesity and diabetes. Epigenetic markers may serve to screen indivuals at risk for obesity and assess the effects of interventions in early life that may delay or prevent obesity in early life. This might contribute to lower the obesity-related burden of death and disability at the population level. The available evidence indicates that epigenetic marks are in fact modifiable, based on modifications in the intrauterine environment and changes in food intake, physical activity and dietary patterns patterns during pregnancy and early years of adult life. This offers the opportunity to intervene before conception, during pregnancy, infancy, childhood, and also in later life. There must be documentation on the best preventive actions in terms of diet and physical activity that will modify or revert the adverse epigenetic markers, thus preventing obesity and diabetes in suceptible individuals and populations

    Endothelial cell regulation of systemic haemodynamics and metabolism acts through the HIF transcription factors.

    Get PDF
    BackgroundThe vascular endothelium has important endocrine and paracrine roles, particularly in the regulation of vascular tone and immune function, and it has been implicated in the pathophysiology of a range of cardiovascular and inflammatory conditions. This study uses a series of transgenic murine models to explore for the first time the role of the hypoxia-inducible factors, HIF-1α and HIF-2α in the pulmonary and systemic circulations as potential regulators of systemic vascular function in normoxic or hypoxic conditions and in response to inflammatory stress. We developed a series of transgenic mouse models, the HIF-1α Tie2Cre, deficient in HIF1-α in the systemic and pulmonary vascular endothelium and the L1Cre, a pulmonary endothelium specific knockout of HIF-1α or HIF-2α. In vivo, arterial blood pressure and metabolic activity were monitored continuously in normal atmospheric conditions and following an acute stimulus with hypoxia (10%) or lipopolysaccharide (LPS). Ex vivo, femoral artery reactivity was assessed using wire myography.ResultsUnder normoxia, the HIF-1α Tie2Cre mouse had increased systolic and diastolic arterial pressure compared to litter mate controls over the day-night cycle under normal environmental conditions. VO2 and VCO2 were also increased. Femoral arteries displayed impaired endothelial relaxation in response to acetylcholine mediated by a reduction in the nitric oxide dependent portion of the response. HIF-1α L1Cre mice displayed a similar pattern of increased systemic blood pressure, metabolic rate and impaired vascular relaxation without features of pulmonary hypertension, polycythaemia or renal dysfunction under normal conditions. In response to acute hypoxia, deficiency of HIF-1α was associated with faster resolution of hypoxia-induced haemodynamic and metabolic compromise. In addition, systemic haemodynamics were less compromised by LPS treatment.ConclusionsThese data show that deficiency of HIF-1α in the systemic or pulmonary endothelium is associated with increased systemic blood pressure and metabolic rate, a pattern that persists in both normoxic conditions and in response to acute stress with potential implications for our understanding of the pathophysiology of vascular dysfunction in acute and chronic disease

    Assessment of in vivo fetal growth and placental vascular function in a novel intrauterine growth restriction model of progressive uterine artery occlusion in guinea pigs

    Get PDF
    Intra-uterine growth restriction (IUGR) is associated with short and long-term metabolic and cardiovascular alterations. Mice and rats have been extensively used to study the effects of IUGR, but there are notable differences in fetal and placental physiology relative to those of humans that argue for alternative animal models. This study proposes that gradual occlusion of uterine arteries from mid-gestation in pregnant guinea pigs produces a novel model to better assess human IUGR. Fetal biometry and in vivo placental vascular function were followed by sonography and Doppler of control pregnant guinea pigs and sows submitted to surgical placement of ameroid constrictors in both uterine arteries (IUGR) at mid-gestation (35 days). The ameroid constrictors induced a reduction in the fetal abdominal circumference growth rate (0.205 cm day-1) compared to control (0.241 cm day-1, P \u3c 0.001) without affecting biparietal diameter growth. Umbilical artery pulsatility and resistance indexes at 10 and 20 days after surgery were significantly higher in IUGR animals than controls (P \u3c 0.01). These effects were associated with a decrease in the relative luminal area of placental chorionic arteries (21.3 ± 2.2% vs. 33.2 ± 2.7%, P \u3c 0.01) in IUGR sows at near term. Uterine artery intervention reduced fetal (∼30%), placental (∼20%) and liver (∼50%) weights (P \u3c 0.05), with an increased brain to liver ratio (P \u3c 0.001) relative to the control group. These data demonstrate that the ameroid constrictor implantations in uterine arteries in pregnant guinea pigs lead to placental vascular dysfunction and altered fetal growth that induces asymmetric IUGR

    Assessment of in vivo fetal growth and placental vascular function in a novel intrauterine growth restriction model of progressive uterine artery occlusion in guinea pigs

    Get PDF
    Intra-uterine growth restriction (IUGR) is associated with short and long-term metabolic and cardiovascular alterations. Mice and rats have been extensively used to study the effects of IUGR, but there are notable differences in fetal and placental physiology relative to those of humans that argue for alternative animal models. This study proposes that gradual occlusion of uterine arteries from mid-gestation in pregnant guinea pigs produces a novel model to better assess human IUGR. Fetal biometry and in vivo placental vascular function were followed by sonography and Doppler of control pregnant guinea pigs and sows submitted to surgical placement of ameroid constrictors in both uterine arteries (IUGR) at mid-gestation (35 days). The ameroid constrictors induced a reduction in the fetal abdominal circumference growth rate (0.205 cm day-1) compared to control (0.241 cm day-1, P \u3c 0.001) without affecting biparietal diameter growth. Umbilical artery pulsatility and resistance indexes at 10 and 20 days after surgery were significantly higher in IUGR animals than controls (P \u3c 0.01). These effects were associated with a decrease in the relative luminal area of placental chorionic arteries (21.3 ± 2.2% vs. 33.2 ± 2.7%, P \u3c 0.01) in IUGR sows at near term. Uterine artery intervention reduced fetal (∼30%), placental (∼20%) and liver (∼50%) weights (P \u3c 0.05), with an increased brain to liver ratio (P \u3c 0.001) relative to the control group. These data demonstrate that the ameroid constrictor implantations in uterine arteries in pregnant guinea pigs lead to placental vascular dysfunction and altered fetal growth that induces asymmetric IUGR

    Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic

    Get PDF
    Over 30 years ago Professor David Barker first proposed the theory that events in early life could explain an individual\u27s risk of non-communicable disease in later life: the developmental origins of health and disease (DOHaD) hypothesis. During the 1990s the validity of the DOHaD hypothesis was extensively tested in a number of human populations and the mechanisms underpinning it characterised in a range of experimental animal models. Over the past decade, researchers have sought to use this mechanistic understanding of DOHaD to develop therapeutic interventions during pregnancy and early life to improve adult health. A variety of animal models have been used to develop and evaluate interventions, each with strengths and limitations. It is becoming apparent that effective translational research requires that the animal paradigm selected mirrors the tempo of human fetal growth and development as closely as possible so that the effect of a perinatal insult and/or therapeutic intervention can be fully assessed. The guinea pig is one such animal model that over the past two decades has demonstrated itself to be a very useful platform for these important reproductive studies. This review highlights similarities in the in utero development between humans and guinea pigs, the strengths and limitations of the guinea pig as an experimental model of DOHaD and the guinea pig\u27s potential to enhance clinical therapeutic innovation to improve human health. (Figure presented.)

    The stochastic spectator

    Get PDF
    We study the stochastic distribution of spectator fields predicted in different slow-roll inflation backgrounds. Spectator fields have a negligible energy density during inflation but may play an important dynamical role later, even giving rise to primordial density perturbations within our observational horizon today. During de-Sitter expansion there is an equilibrium solution for the spectator field which is often used to estimate the stochastic distribution during slow-roll inflation. However slow roll only requires that the Hubble rate varies slowly compared to the Hubble time, while the time taken for the stochastic distribution to evolve to the de-Sitter equilibrium solution can be much longer than a Hubble time. We study both chaotic (monomial) and plateau inflaton potentials, with quadratic, quartic and axionic spectator fields. We give an adiabaticity condition for the spectator field distribution to relax to the de-Sitter equilibrium, and find that the de-Sitter approximation is never a reliable estimate for the typical distribution at the end of inflation for a quadratic spectator during monomial inflation. The existence of an adiabatic regime at early times can erase the dependence on initial conditions of the final distribution of field values. In these cases, spectator fields acquire sub-Planckian expectation values. Otherwise spectator fields may acquire much larger field displacements than suggested by the de-Sitter equilibrium solution. We quantify the information about initial conditions that can be obtained from the final field distribution. Our results may have important consequences for the viability of spectator models for the origin of structure, such as the simplest curvaton models

    PPARGC1A gene promoter methylation as a biomarker of insulin secretion and sensitivity in response to glucose challenges

    Get PDF
    Methylation in CpG sites of the PPARGC1A gene (encoding PGC1-α) has been associated with adiposity, insulin secretion/sensitivity indexes and type 2 diabetes. We assessed the association between the methylation profile of the PPARGC1A gene promoter gene in leukocytes with insulin secretion/sensitivity indexes in normoglycemic women. A standard oral glucose tolerance test (OGTT) and an abbreviated version of the intravenous glucose tolerance test (IVGTT) were carried out in n = 57 Chilean nondiabetic women with measurements of plasma glucose, insulin, and C-peptide. Bisulfite-treated DNA from leukocytes was evaluated for methylation levels in six CpG sites of the proximal promoter of the PPARGC1A gene by pyrosequencing (positions -816, -783, -652, -617, -521 and -515). A strong correlation between the DNA methylation percentage of different CpG sites of the PPARGC1A promoter in leukocytes was found, suggesting an integrated epigenetic control of this region. We found a positive association between the methylation levels of the CpG site -783 with the insulin sensitivity Matsuda composite index (rho = 0.31; p = 0.02) derived from the OGTT. The CpG hypomethylation in the promoter position -783 of the PPARGC1A gene in leukocytes may represent a biomarker of reduced insulin sensitivity after the ingestion of glucose
    • …
    corecore