865 research outputs found

    Orbital Elements and Stellar Parameters of the Active Binary UX Arietis

    Get PDF
    This is the final version of the article. Available from American Astronomical Society via the DOI in this record.Stellar activity observed as large surface spots, radio flares, or emission lines is often found in binary systems. UX Arietis exhibits these signs of activity, originating on the K0 subgiant primary component. Our aim is to resolve the binary, measure the orbital motion, and provide accurate stellar parameters such as masses and luminosities to aid in the interpretation of the observed phenomena. Using the CHARA six-telescope optical long-baseline array on Mount Wilson, California, we obtained amplitudes and phases of the interferometric visibility on baselines up to 330 m in length, resolving the two components of the binary. We reanalyzed archival Center for Astrophysics spectra to disentangle the binary component spectra and the spectrum of the third component, which was resolved by speckle interferometry. We also obtained new spectra with the Nordic Optical Telescope, and we present new photometric data that we use to model stellar surface spot locations. Both interferometric visibilities and spectroscopic radial velocities are modeled with a spotted primary stellar surface using the Wilson–Devinney code. We fit the orbital elements to the apparent orbit and radial velocity data to derive the distance (52.1 ± 0.8 pc) and stellar masses (MP = 1.30 0.06 M, MS = 1.14 0.06 M). The radius of the primary can be determined to be RP = 5.6 0.1 R and that of the secondary to be RS = 1.6 0.2 R. The equivalent spot coverage of the primary component was found to be 62% with an effective temperature 20% below that of the unspotted surface.We thank Robert Wilson (University of Florida) for providing a custom version of his code to compute images of spotted stellar surfaces and for his help with using it. This work is based upon observations obtained with the Georgia State University (GSU) Center for High Angular Resolution Astronomy (CHARA) array at Mount Wilson Observatory. The CHARA array is supported by the National Science Foundation under grant numbers AST-1211929 and AST-1411654. Institutional support has been provided by the GSU College of Arts and Sciences and the GSU Office of the Vice President for Research and Economic Development. The MIRC instrument at the CHARA array was funded by the University of Michigan. F.B., R.R., and J.D.M. acknowledge support from NSF-AST 1210972 and 1108963. G.T. acknowledges partial support from NSF grant AST-1509375. S.K. acknowledges support from an STFC Rutherford Fellowship (ST/J004030/1) and ERC Starting Grant (grant agreement no. 639889). This work is also based on observations made with the Nordic Optical Telescope (NOT), operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This research has made use of the SIMBAD database, operated at the CDS, Strasbourg, France. This research has made use of the Jean-Marie Mariotti Center SearchCal service13 codeveloped by FIZEAU and LAOG/IPAG and of the CDS astronomical databases SIMBAD and VIZIER.14 This research has made use of the Washington Double Star Catalog, maintained at the U.S. Naval Observatory. We thank Nicholas Elias II for discussions. We thank Dimitri Pourbaix for maintaining and providing access to the SB9 database of RV measurements of spectroscopic binaries

    Multiplicity of Galactic Cepheids from long-baseline interferometry. I. CHARA/MIRC detection of the companion of V1334 Cygni

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Context. More than 60% of Cepheids are in binary or multiple systems. Studying such systems could lead to a better understanding of the age and evolution of Cepheids. These are also useful tools to estimate the mass of Cepheids, and constrain theoretical models of their pulsation and evolution. Aims. We aim at determining the masses of Cepheids in binary systems, as well as their geometric distances and the flux contribution of the companions. The combination of interferometry with spectroscopy will offer a unique and independent estimate of the Cepheid masses. Methods. Using long-baseline interferometry at visible and infrared wavelengths, it is possible to spatially resolve binary systems containing a Cepheid down to milliarcsecond separations. Based on the resulting visual orbit and radial velocities, we can then derive the fundamental parameters of these systems, particularly the masses of the components and the geometric distance. We therefore performed interferometric observations of the first-overtone mode Cepheid V1334 Cyg with the CHARA/MIRC combiner. Results. We report the first detection of a Cepheid companion using long-baseline interferometry. We detect the signature of a companion orbiting V1334 Cyg at two epochs. We measure a flux ratio between the companion and the Cepheid f = 3.10 ± 0.08%, giving an apparent magnitude mH = 8.47 ± 0.15 mag. The combination of interferometric and spectroscopic data have enabled the unique determination of the orbital elements. P = 1938.6 ± 1.2 days, Tp = 2 443 616.1 ± 7.3, a = 8.54 ± 0.51 mas, i = 124.7 ± 1.8 ◦ , e = 0.190 ± 0.013, ω = 228.7 ± 1.6 ◦ , and Ω = 206.3 ± 9.4 ◦ . We derive a minimal distance d ∼ 691 pc, a minimum mass for both stars of 3.6 M , with a spectral type earlier than B5.5V for the companion star. Our measured flux ratio suggests that radial velocity detection of the companion using spectroscopy is within reach, and would provide an orbital parallax and model-free massesThe authors would like to thank the CHARA Array and Mount Wilson Observatory staff for their support. Research conducted at the CHARA Array is funded by the National Science Foundation through NSF grant AST-0908253, by Georgia State University, the W. M. Keck Foundation, the Packard Foundation, and the NASA Exoplanet Science Institute. J.D.M. acknowledges funding from the NSF grants AST-0707927 and AST-0807577. W.G. and G.P. gratefully acknowledge financial support for this work from the BASAL Centro de Astrofísica y Tecnologías Afines (CATA) PFB-06/2007. Support from the Polish National Science Centre grant MAESTRO and the Polish Ministry of Science grant Ideas Plus (awarded to G. P.) is also acknowledge. This research received the support of PHASE, the high angular resolution partnership between ONERA, Observatoire de Paris, CNRS, and University Denis Diderot Paris 7. A.G. acknowledges support from FONDECYT grant 3130361. LSz has been supported by the ESTEC Contract No.4000106398/12/NL/KML. This work made use of the SIMBAD and VIZIER astrophysical database from CDS, Strasbourg, France and the bibliographic informations from the NASA Astrophysics Data System. This research has made use of the Jean-Marie Mariotti Center LITpro service, co-developed by CRAL, LAOG and FIZEAU, and SearchCal service, co-developed by FIZEAU and LAOG/IPAG, and of CDS Astronomical Databases SIMBAD and VIZIER

    The H-band Emitting Region of the Luminous Blue Variable P Cygni: Spectrophotometry and Interferometry of the Wind

    Get PDF
    This is the final version of the article. Available from American Astronomical Society / IOP Publishing via the DOI in this record.We present the first high angular resolution observations in the near-infrared H band (1.6 μm) of the luminous blue variable star P Cygni. We obtained six-telescope interferometric observations with the CHARA Array and the MIRC beam combiner. These show that the spatial flux distribution is larger than expected for the stellar photosphere. A two-component model for the star (uniform disk) plus a halo (two-dimensional Gaussian) yields an excellent fit of the observations, and we suggest that the halo corresponds to flux emitted from the base of the stellar wind. This wind component contributes about 45% of the H-band flux and has an angular FWHM = 0.96 mas, compared to the predicted stellar diameter of 0.41 mas. We show several images reconstructed from the interferometric visibilities and closure phases, and they indicate a generally spherical geometry for the wind. We also obtained near-infrared spectrophotometry of P Cygni from which we derive the flux excess compared to a purely photospheric spectral energy distribution. The H-band flux excess matches that from the wind flux fraction derived from the two-component fits to the interferometry. We find evidence of significant near-infrared flux variability over the period from 2006 to 2010 that appears similar to the variations in the Hα emission flux from the wind.We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. Support for Ritter Astrophysical Research Center during the time of the observations was provided by the National Science Foundation Program for Research and Education with Small Telescopes (NSF-PREST) under grant AST-0440784 (N.D.M.). This work was also supported by the National Science Foundation under grants AST-0606861 and AST-1009080 (D.R.G.). N.D.R. gratefully acknowledges his current CRAQ postdoctoral fellowship. We are grateful for the insightful comments of A. F. J. Moffat that improved portions of the paper, discussions with Paco Najarro and Luc Dessart about spectroscopic modeling of P Cygni, and support of the MIRC 6 telescope beam combiner by Ettore Pedretti. Institutional support has been provided by the GSU College of Arts and Sciences and by the Research Program Enhancement fund of the Board of Regents of the University System of Georgia, administered through the GSU Office of the Vice President for Research. Operational funding for the CHARA Array is provided by the GSU College of Arts and Sciences, by the National Science Foundation through grants AST-0606958 and AST-0908253, by the W. M. Keck Foundation, and by the NASA Exoplanet Science Institute. We thank the Mount Wilson Institute for providing infrastructure support at Mount Wilson Observatory. The CHARA Array, operated by Georgia State University, was built with funding provided by the National Science Foundation, Georgia State University, the W. M. Keck Foundation, and the David and Lucile Packard Foundation. This research was conducted in part using the Mimir instrument, jointly developed at Boston University and Lowell Observatory and supported by NASA, NSF, and the W. M. Keck Foundation. J.D.M. acknowledges University of Michigan and NSF AST-0707927 for support of MIRC construction and observations. D.P.C. acknowledges support under NSF AST-0907790 to Boston University. We gratefully acknowledge all of this support. This research has made use of the SIMBAD database operated at CDS, Strasbourg, France

    A new frontier for J-band interferometry: Dual-band NIR interferometry with MIRC-X

    Get PDF
    This is the final version. Available from SPIE via the DOI in this recordSPIE Astronomical Telescopes + Instrumentation conference 2020. Online OnlyIn this contribution we report on our work to increase the spectral range of the Michigan Infrared Combiner- eXeter (MIRC-X) instrument at the CHARA array to allow for dual H and J band interferometric observations. We comment on the key science drivers behind this project and the methods of characterisation and correction of instrumental birefringence and dispersion. In addition, we report on the first results from on-sky commissioning in November 2019.Science and Technology Facilities Council (STFC)European Research Council (ERC)NASANational Science Foundation (NSF

    The Orbits and Dynamical Masses of the Castor System

    Get PDF
    This is the final version. Available on open access from the American Astronomical Society via the DOI in this recordCastor is a system of six stars in which the two brighter objects, Castor A and B, revolve around each other every ∼450 yr and are both short-period spectroscopic binaries. They are attended by the more distant Castor C, which is also a binary. Here we report interferometric observations with the Center for High Angular Resolution Astronomy (CHARA) array that spatially resolve the companions in Castor A and B for the first time. We complement these observations with new radial velocity measurements of A and B spanning 30 yr, with the Hipparcos intermediate data, and with existing astrometric observations of the visual AB pair obtained over the past three centuries. We perform a joint orbital solution to solve simultaneously for the three-dimensional orbits of Castor A and B as well as the AB orbit. We find that they are far from being coplanar: the orbit of A is nearly at right angles (92°) relative to the wide orbit, and that of B is inclined about 59° compared to AB. We determine the dynamical masses of the four stars in Castor A and B to a precision better than 1%. We also determine the radii of the primary stars of both subsystems from their angular diameters measured with the CHARA array, and use them together with stellar evolution models to infer an age for the system of 290 Myr. The new knowledge of the orbits enables us to measure the slow motion of Castor C as well, which may assist future studies of the dynamical evolution of this remarkable sextuple system.European Research Council (ERC)Science and Technology Facilities Council (STFC

    Circumstellar discs: What will be next?

    Full text link
    This prospective chapter gives our view on the evolution of the study of circumstellar discs within the next 20 years from both observational and theoretical sides. We first present the expected improvements in our knowledge of protoplanetary discs as for their masses, sizes, chemistry, the presence of planets as well as the evolutionary processes shaping these discs. We then explore the older debris disc stage and explain what will be learnt concerning their birth, the intrinsic links between these discs and planets, the hot dust and the gas detected around main sequence stars as well as discs around white dwarfs.Comment: invited review; comments welcome (32 pages

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur
    corecore