1,251 research outputs found
Direct Total Syntheses of Frenolicin B and Kalafungin via Highly Regioselective Diels-Alder Reactions
Frenolicin B, an anticoccidial agent, has been synthesized in six steps from ketone 3. Racemic kalafungin, an antifungal agent, has been synthesized in five steps. The key step in both syntheses, a regioselective Diels-Alder reaction, proceeds with complete regiocontrol and in excellent yield. One rationale for the remarkable stereocontrol is that the lactone ring induces ring-puckering in the quinone subunit which, in consort with electrostatic repulsion, contributes to the regioselectivity
Turn-by-Turn Imaging of the Transverse Beam Profile in PEP-II
During injection or instability, the transverse profile of an individual bunch in a storage ring can change significantly in a few turns. However, most synchrotron-light imaging techniques are not designed for this time scale. We have developed a novel diagnostic that enhances the utility of a fast gated camera by adding, inexpensively, some features of a dual-axis streak camera, in order to watch the turn-by-turn evolution of the transverse profile, in both x and y. The beam's elliptical profile is reshaped using cylindrical lenses to form a tall and narrow ellipse—essentially the projection of the full ellipse onto one transverse axis. We do this projection twice, by splitting the beam into two paths at different heights, and rotating the ellipse by 90° on one path. A rapidly rotating mirror scans these vertical “pencils” of light horizontally across the photocathode of the camera, which is gated for 3 ns on every Nth ring turn. A single readout of the camera captures 100 images, looking like a stroboscopic photograph of a moving object. We have observed the capture of injected charge into a bunch and the rapid change of beam size at the onset of a fast instability
Regiocontrol by Remote Substituents. A Direct Total Synthesis of Racemic Hongconin
The total synthesis of hongconin (1) has been completed. Key steps include the metalation of a benzylic alcohol, the formation of a six-membered ring ether via a mercury-mediated cyclization, and the regioselective installation of the naphthalene ring by way of a Diels-Alder reaction
Room-temperature exciton storage in elongated semiconductor nanocrystals
Journal ArticleThe excited state of colloidal nanoheterostructures consisting of a spherical CdSe nanocrystal with an epitaxially attached CdS rod can be perturbed effectively by electric fields. Field-induced fluorescence quenching coincides with a conversion of the excited state species from the bright exciton to a metastable trapped state (dark exciton) characterized by a power-law luminescence decay. The conversion is reversible so that up to 10% of quenched excitons recombine radiatively post turn-off of a 1 us field pulse, increasing the delayed luminescence by a factor of 80. Excitons can be stored for up to 105 times the natural lifetime, opening up applications in optical memory elements
Quantum-state filtering applied to the discrimination of Boolean functions
Quantum state filtering is a variant of the unambiguous state discrimination
problem: the states are grouped in sets and we want to determine to which
particular set a given input state belongs.The simplest case, when the N given
states are divided into two subsets and the first set consists of one state
only while the second consists of all of the remaining states, is termed
quantum state filtering. We derived previously the optimal strategy for the
case of N non-orthogonal states, {|\psi_{1} >, ..., |\psi_{N} >}, for
distinguishing |\psi_1 > from the set {|\psi_2 >, ..., |\psi_N >} and the
corresponding optimal success and failure probabilities. In a previous paper
[PRL 90, 257901 (2003)], we sketched an appplication of the results to
probabilistic quantum algorithms. Here we fill in the gaps and give the
complete derivation of the probabilstic quantum algorithm that can optimally
distinguish between two classes of Boolean functions, that of the balanced
functions and that of the biased functions. The algorithm is probabilistic, it
fails sometimes but when it does it lets us know that it did. Our approach can
be considered as a generalization of the Deutsch-Jozsa algorithm that was
developed for the discrimination of balanced and constant Boolean functions.Comment: 8 page
Optimal unambiguous filtering of a quantum state: An instance in mixed state discrimination
Deterministic discrimination of nonorthogonal states is forbidden by quantum
measurement theory. However, if we do not want to succeed all the time, i.e.
allow for inconclusive outcomes to occur, then unambiguous discrimination
becomes possible with a certain probability of success. A variant of the
problem is set discrimination: the states are grouped in sets and we want to
determine to which particular set a given pure input state belongs. We consider
here the simplest case, termed quantum state filtering, when the given
non-orthogonal states, , are divided into
two sets and the first set consists of one state only while the second consists
of all of the remaining states. We present the derivation of the optimal
measurement strategy, in terms of a generalized measurement (POVM), to
distinguish from the set and the
corresponding optimal success and failure probabilities. The results, but not
the complete derivation, were presented previously [\prl {\bf 90}, 257901
(2003)] as the emphasis there was on appplication of the results to novel
probabilistic quantum algorithms. We also show that the problem is equivalent
to the discrimination of a pure state and an arbitrary mixed state.Comment: 8 page
Metabolic Profiling of Echinacea Genotypes and a Test of Alternative Taxonomic Treatments
The genus Echinacea is used as an herbal medicine to treat a variety of ailments. To better understand its potential chemical variation, 40 Echinacea accessions encompassing broad geographical and morphological diversity were evaluated under controlled conditions. Metabolites of roots from these accessions were analyzed by HPLC-photo diode array (HPLC-PDA), GC-MS, and multivariate statistical methods. In total, 43 lipophilic metabolites, including 24 unknown compounds, were detected. Weighted principal component analysis (WPCA) and clustering analysis of the levels of these metabolites across Echinacea accessions, based on Canberra distances, allowed us to test two alternative taxonomic treatments of the genus, with the further goal of facilitating accession identification. A widely used system developed by McGregor based primarily on morphological features was more congruent with the dendrogram generated from the lipophilic metabolite data than the system more recently developed by Binns et al. Our data support the hypothesis that Echinacea pallida is a diverse allopolyploid, incorporating the genomes of Echinacea simulata and another taxon, possibly Echinacea sanguinea. Finally, most recognized taxa of Echinacea can be identified by their distinct lipophilic metabolite fingerprints
Conditional Lot Splitting to Avoid Setups While Reducing Flow Time
Previous research has clearly and consistently shown that flow time advantages accrue from splitting production lots into smaller transfer batches or sub-lots. Less extensively discussed, and certainly undesired, is the fact that lot splitting may dramatically increase the number of setups required, making it impractical in some settings. This paper describes and demonstrates a primary cause of these “extra” setups. It then proposes and evaluates decision rules which selectively invoke lot splitting in an attempt to avoid extra setups. For the closed job shop environment tested, our results indicate that conditional logic can achieve a substantial portion of lot splitting’s flow time improvement while avoiding the vast majority of the additional setups which would be caused by previously tested lot splitting schemes
- …