78 research outputs found

    Fahrtbericht "Poseidon"-Reise 104/2 [POS104/2]

    Get PDF

    Ekman drift in homogeneous water

    Get PDF
    Measurements made with satellite-tracked buoys drogued in different layers between the sea surface and 30-m depth under homogeneous winter conditions in the North Sea allow analysis of the Ekman currents under a large variety of wind conditions. The experiment lasted from November 20, 1991, until February 29, 1992. The first 4 weeks of this period, during which the buoys stayed close together, are used to determine the Ekman stresses. The total current field is a superposition of barotropic currents due to sea level variations and Ekman currents. The classical Ekman theory is not able to describe properly the observed deflection of the currents to the right of the wind direction and their decay with depth. This deflection is 10° near the sea surface and increases to approximately 50° in 25-m depth. The relation between wind stress and the stress field in the interior of the water is given by a tensor, which describes the rotation and the variation of the stress with increasing depth. The concept of eddy viscosity is applicable, if a viscosity tensor is used to relate stress and vertical shear. The viscosity tensor is a function of the vertical coordinate only and is independent from the wind stress. It shows maximum values in 15- to 20-m depth and may be due to Langmuir circulation cells. Further studies are needed to determine the physics of this tensor. Its magnitude in the interior of the mixed layer exceeds 1000 cgs units. Consequently, Ekman currents are weak and may not be the dominant currents within the mixed layer

    Günter Dietrichs Kieler Jahre : 1959-1972

    Get PDF

    The response of drifting buoys to currents and wind

    Get PDF
    Two buoy types have been tested with respect to their drift performance under drogued and undrogued conditions. Additionally, forces acting on the buoys were measured directly. Quadratic drag laws have been confirmed for the drag in water and the combined drag of wind and waves. Stokes drift contributes about one half to the wind factor of 0.023, which is obtained for undrogued buoys in the Atlantic. The forces on a windowshade drogue are given by a linear relation between force and water velocity for speeds exceeding 10 cm/s. They have been extrapolated to speeds of less than 10 cm/s by both a linear and a quadratic relationship. Correlations between drift and wind speed in the Atlantic suggest that the linear law is a better approximation under realistic conditions. According to these measurements in the Atlantic the described buoy-drogue system with a windowshade drogue in 100-m depth is a good current-measuring device. Slippage is negligible for wind speeds of less than 15 m/s and is less than 2 cm/s under gale conditions. Undrogued buoys are strongly affected by wind and cannot be used for the analysis of currents without correction, even under light winds

    Bericht über die "Poseidon"-Reise 111/2 [POS111/2] vom 02.-24.08.1984 in das Gebiet zwischen Azoren und Neufundland

    Get PDF
    Die Reise diente der Untersuchung des Azorenstromes in Zusammenarbeit mit dem estnischen Forschungsschiff "Arnold Veimer"

    A numerical study of the water exchange through the Danish Straits

    Get PDF
    The free surface version of the GFDL model is used to study inflow and outflow through the Danish Straits, which connect the Baltic with the North Sea. Three problems are addressed: (i) the piling up of inflowing water in the Arkona basin; (ii) the transport ratios between Belt and Sound; (iii) the dominance of hydraulic or geostrophic control. Model results show that a cyclonic eddy (dome) is formed by the inflowing saline water that prevents this water from passing rapidly into the Bornholm basin. This eddy is enforced with increasing inflow due to a sea level difference between Kattegat and western Baltic. If density gradients along the straits are weak and the flow is dominantly driven by sea level differences between Kattegat and Baltic, the well-known ratio of 70% : 30% for the transports through Belt and Sound are confirmed. Strong density gradients can change this ratio considerably, especially in the outflow case, when the light water of the Baltic flows against the heavier water of the Kattegat. Under variable wind conditions, no fixed ratio is found. The flow in the Straits is geostrophically controlled; however, the strong baroclinic density field does not allow us to derive the transport simply from sea level inclination

    Lagrangian properties of eddy fields in the northern North Atlantic as deduced from satellite-tracked buoys

    Get PDF
    One hundred and thirteen satellite-tracked buoys have been used during their first 5 months after deployment in order to calculate Lagrangian statistics of the eddy field in the northern North Atlantic between Newfoundland and the Canary basin. r.m.s. velocities are isotropic and increase from southeast to northwest. Lagrangian integral time scales, derived both from correlation function and from dispersion, are slightly anisotropic and decrease from the subtropics toward the North Atlantic Current. Time scale is inversely proportional to the r.m.s. velocity of the eddies. Eddy length scale is approximately constant in the North Atlantic. Dispersion is in good agreement with Taylor's hypothesis, following a t2-law during the first day after release and a linear increase with time during days 10 to 60. Eddy diffusivity increases from 30N to 50N by a factor of about 4 and is linearly dependent on the r.m.s. velocity. The energy containing frequency band of the eddies shifts toward higher frequencies in the northern part of the Atlantic. Beyond the cut-off frequency of the eddies the spectral slope follows a -2 or -3 power law

    Interne Wellen in einem exponentiell geschichteten Meer

    Get PDF
    Es wird gezeigt, daß man mit bekannten Routinemethoden der mathematischen Physik die Kenntnisse über Kinematik und Dynamik interner Wellen wesentlich gegenüber den aus der Theorie der Grenzflächenwellen bekannten Ergebnissen erweitern kann, wenn man mit einer exponentiellen Dichteverteilung rechnet. In den Abschnitten 1-3 werden bekannte Resultate zusammengestellt, Abschnitt 4 enthält eine Formel für die Wellenlänge interner Wellen (GI. 31). Die Energie interner Wellen (Abschnitt 5) erweist sich als erheblich größer als die der Grenzflächenwellen. In Abschnitt 7 werden Rechnungen über die Entstehung interner Wellen durch die Gezeitenkräfte, den Luftdruck und den Wind angegeben, und in Abschnitt 8 wird gezeigt, daß lineare inkompressible interne Wellen in der Tiefsee praktisch keine Dämpfung erfahren

    Zum System der internen Seiches der Ostsee

    Get PDF
    Es wird von den Seichesperioden, die G. NEUMANN (1941) und W. KRAUSS und L. MAGAARD (l962) berechnet haben, ausgegangen. Abschnitt 1 gibt an Hand eines rechteckigen Meergebietes (x, z-Ebene) mit exponentieller Dichteverteilung, wie sie typisch für die westliche und mittlere Ostsee ist, die theoretische Konzeption an. Diese liegt Abschnitt 2 zugrunde, in dem das Seichessystem für eine reale Dichte- und Tiefenverteilung der Ostsee (ohne Bottnischen Meerbusen) berechnet wird. In Abschnitt 3 wird an einer Meßreihe gezeigt, daß sich die komplizierte Tiefenverteilung der horizontalen Strömungen durch interne Wellen l.-5. Ordnung interpretieren läßt, und daß die Strömungen, die zu den internen Wellen 2. -5. Ordnung gehören, jene der Oberflächenseiches übertreffen. Die Analyse zeigt, daß mit den Oberflächenseiches gleichzeitig interne Seiches derselben Periode aber mit sehr kurzer Wellenlänge auftreten, wie sie in den Abb. 42-45 dargestellt sind
    corecore