506 research outputs found

    Cosmological Information in Weak Lensing Peaks

    Full text link
    Recent studies have shown that the number counts of convergence peaks N(kappa) in weak lensing (WL) maps, expected from large forthcoming surveys, can be a useful probe of cosmology. We follow up on this finding, and use a suite of WL convergence maps, obtained from ray-tracing N-body simulations, to study (i) the physical origin of WL peaks with different heights, and (ii) whether the peaks contain information beyond the convergence power spectrum P_ell. In agreement with earlier work, we find that high peaks (with amplitudes >~ 3.5 sigma, where sigma is the r.m.s. of the convergence kappa) are typically dominated by a single massive halo. In contrast, medium-height peaks (~0.5-1.5 sigma) cannot be attributed to a single collapsed dark matter halo, and are instead created by the projection of multiple (typically, 4-8) halos along the line of sight, and by random galaxy shape noise. Nevertheless, these peaks dominate the sensitivity to the cosmological parameters w, sigma_8, and Omega_m. We find that the peak height distribution and its dependence on cosmology differ significantly from predictions in a Gaussian random field. We directly compute the marginalized errors on w, sigma_8, and Omega_m from the N(kappa) + P_ell combination, including redshift tomography with source galaxies at z_s=1 and z_s=2. We find that the N(kappa) + P_ell combination has approximately twice the cosmological sensitivity compared to P_ell alone. These results demonstrate that N(kappa) contains non-Gaussian information complementary to the power spectrum.Comment: 24 pages, 12 figures, 14 tables. Accepted for publication in PRD (version before proofs

    Sustainability assessment of organic dairy farms in mountainous areas of Austria

    Get PDF
    Dairy farming plays a major role in mountainous regions of Austria, mostly due to high proportion of grasslands. In general, Austria’s dairy farming faces challenges regarding sustainability, e.g. environmental impacts, but specifically for alpine areas low productivity and dependency on direct payments are lowering sustainability. Organic farming is considered as a strategy to overcome these challenges. Considering this general background, we analysed the sustainability performance and its main drivers of organic dairy farms in mountainous regions of Austria

    Probing the time dependence of dark energy

    Full text link
    A new method to investigate a possible time-dependence of the dark energy equation of state ww is proposed. We apply this methodology to two of the most recent data sets of type Ia supernova (Union2 and SDSS) and the baryon acoustic oscillation peak at z=0.35z = 0.35. For some combinations of these data, we show that there is a clear departure from the standard Λ\LambdaCDM model at intermediary redshifts, although a non-evolving dark energy component (dw/dz=0dw/dz = 0) cannot be ruled out by these data. The approach developed here may be useful to probe a possible evolving dark energy component when applied to upcoming observational data.Comment: 6 pages, 3 figures, LaTe

    Probing Cosmology with Weak Lensing Minkowski Functionals

    Full text link
    In this paper, we show that Minkowski Functionals (MFs) of weak gravitational lensing (WL) convergence maps contain significant non-Gaussian, cosmology-dependent information. To do this, we use a large suite of cosmological ray-tracing N-body simulations to create mock WL convergence maps, and study the cosmological information content of MFs derived from these maps. Our suite consists of 80 independent 512^3 N-body runs, covering seven different cosmologies, varying three cosmological parameters Omega_m, w, and sigma_8 one at a time, around a fiducial LambdaCDM model. In each cosmology, we use ray-tracing to create a thousand pseudo-independent 12 deg^2 convergence maps, and use these in a Monte Carlo procedure to estimate the joint confidence contours on the above three parameters. We include redshift tomography at three different source redshifts z_s=1, 1.5, 2, explore five different smoothing scales theta_G=1, 2, 3, 5, 10 arcmin, and explicitly compare and combine the MFs with the WL power spectrum. We find that the MFs capture a substantial amount of information from non-Gaussian features of convergence maps, i.e. beyond the power spectrum. The MFs are particularly well suited to break degeneracies and to constrain the dark energy equation of state parameter w (by a factor of ~ three better than from the power spectrum alone). The non-Gaussian information derives partly from the one-point function of the convergence (through V_0, the "area" MF), and partly through non-linear spatial information (through combining different smoothing scales for V_0, and through V_1 and V_2, the boundary length and genus MFs, respectively). In contrast to the power spectrum, the best constraints from the MFs are obtained only when multiple smoothing scales are combined.Comment: 19 pages, 9 figures, 5 table

    Dispersity in Polymer Science (IUPAC Recommendations 2009)

    Get PDF

    Black hole production in tachyonic preheating

    Full text link
    We present fully non-linear simulations of a self-interacting scalar field in the early universe undergoing tachyonic preheating. We find that density perturbations on sub-horizon scales which are amplified by tachyonic instability maintain long range correlations even during the succeeding parametric resonance, in contrast to the standard models of preheating dominated by parametric resonance. As a result the final spectrum exhibits memory and is not universal in shape. We find that throughout the subsequent era of parametric resonance the equation of state of the universe is almost dust-like, hence the Jeans wavelength is much smaller than the horizon scale. If our 2D simulations are accurate reflections of the situation in 3D, then there are wide regions of parameter space ruled out by over-production of black holes. It is likely however that realistic parameter values, consistent with COBE/WMAP normalisation, are safetly outside this black hole over-production region.Comment: 6pages, 7figures, figures correcte

    Jerk, snap, and the cosmological equation of state

    Full text link
    Taylor expanding the cosmological equation of state around the current epoch is the simplest model one can consider that does not make any a priori restrictions on the nature of the cosmological fluid. Most popular cosmological models attempt to be ``predictive'', in the sense that once somea priori equation of state is chosen the Friedmann equations are used to determine the evolution of the FRW scale factor a(t). In contrast, a retrodictive approach might usefully take observational dataconcerning the scale factor, and use the Friedmann equations to infer an observed cosmological equation of state. In particular, the value and derivatives of the scale factor determined at the current epoch place constraints on the value and derivatives of the cosmological equation of state at the current epoch. Determining the first three Taylor coefficients of the equation of state at the current epoch requires a measurement of the deceleration, jerk, and snap -- the second, third, and fourth derivatives of the scale factor with respect to time. Higher-order Taylor coefficients in the equation of state are related to higher-order time derivatives of the scale factor. Since the jerk and snap are rather difficult to measure, being related to the third and fourth terms in the Taylor series expansion of the Hubble law, it becomes clear why direct observational constraints on the cosmological equation of state are so relatively weak; and are likely to remain weak for the foreseeable future.Comment: V1: 10 pages; uses iopart.cls setstack.sty V2: six additional references, some clarifying comments and discussion, no physics changes. V3: significant additions based on community feedback; explicit calculations now carried out to fourth order in redshift. V4: Discussion of current observational situation added. This version accepted for publication in Classical and Quantum Gravity. Now 15 page

    Interpolating Masked Weak Lensing Signal with Karhunen-Loeve Analysis

    Full text link
    We explore the utility of Karhunen Loeve (KL) analysis in solving practical problems in the analysis of gravitational shear surveys. Shear catalogs from large-field weak lensing surveys will be subject to many systematic limitations, notably incomplete coverage and pixel-level masking due to foreground sources. We develop a method to use two dimensional KL eigenmodes of shear to interpolate noisy shear measurements across masked regions. We explore the results of this method with simulated shear catalogs, using statistics of high-convergence regions in the resulting map. We find that the KL procedure not only minimizes the bias due to masked regions in the field, it also reduces spurious peak counts from shape noise by a factor of ~ 3 in the cosmologically sensitive regime. This indicates that KL reconstructions of masked shear are not only useful for creating robust convergence maps from masked shear catalogs, but also offer promise of improved parameter constraints within studies of shear peak statistics.Comment: 13 pages, 9 figures; submitted to Ap

    Testing the Cosmological Constant as a Candidate for Dark Energy

    Get PDF
    It may be difficult to single out the best model of dark energy on the basis of the existing and planned cosmological observations, because many different models can lead to similar observational consequences. However, each particular model can be studied and either found consistent with observations or ruled out. In this paper, we concentrate on the possibility to test and rule out the simplest and by far the most popular of the models of dark energy, the theory described by general relativity with positive vacuum energy (the cosmological constant). We evaluate the conditions under which this model could be ruled out by the future observations made by the Supernova/Acceleration Probe SNAP (both for supernovae and weak lensing) and by the Planck Surveyor cosmic microwave background satellite.Comment: 6 pages, 2 figures, revtex
    • …
    corecore