43 research outputs found

    Cosmological perturbations in a family of deformations of general relativity

    Full text link
    We study linear cosmological perturbations in a previously introduced family of deformations of general relativity characterized by the absence of new degrees of freedom. The homogeneous and isotropic background in this class of theories is unmodified and is described by the usual Friedmann equations. The theory of cosmological perturbations is modified and the relevant deformation parameter has the dimension of length. Gravitational perturbations of the scalar type can be described by a certain relativistic potential related to the matter perturbations just as in general relativity. A system of differential equations describing the evolution of this potential and of the stress-energy density perturbations is obtained. We find that the evolution of scalar perturbations proceeds with a modified effective time-dependent speed of sound, which, contrary to the case of general relativity, does not vanish even at the matter-dominated stage. In a broad range of values of the length parameter controlling the deformation, a specific transition from the regime of modified gravity to the regime of general relativity in the evolution of scalar perturbations takes place during the radiation domination. In this case, the resulting power spectrum of perturbations in radiation and dark matter is suppressed on the comoving spatial scales that enter the Hubble radius before this transition. We estimate the bounds on the deformation parameter for which this suppression does not lead to observable consequences. Evolution of scalar perturbations at the inflationary stage is modified but very slightly and the primordial spectrum generated during inflation is not noticeably different from the one obtained in general relativity.Comment: 45 pages, version published in JCAP; minor changes, one section moved to the appendi

    A 4D gravity theory and G2-holonomy manifolds

    Full text link
    Bryant and Salamon gave a construction of metrics of G2 holonomy on the total space of the bundle of anti-self-dual (ASD) 2-forms over a 4-dimensional self-dual Einstein manifold. We generalise it by considering the total space of an SO(3) bundle (with fibers R^3) over a 4-dimensional base, with a connection on this bundle. We make essentially the same ansatz for the calibrating 3-form, but use the curvature 2-forms instead of the ASD ones. We show that the resulting 3-form defines a metric of G2 holonomy if the connection satisfies a certain second-order PDE. This is exactly the same PDE that arises as the field equation of a certain 4-dimensional gravity theory formulated as a diffeomorphism-invariant theory of SO(3) connections. Thus, every solution of this 4-dimensional gravity theory can be lifted to a G2-holonomy metric. Unlike all previously known constructions, the theory that we lift to 7 dimensions is not topological. Thus, our construction should give rise to many new metrics of G2 holonomy. We describe several examples that are of cohomogeneity one on the base.Comment: 25 page

    Pure-connection gravity and anisotropic singularities

    Get PDF
    In four space-time dimensions, there exists a special infinite-parameter family of chiral modified gravity theories. They are most properly described by a connection field, with space-time metric being a secondary and derived concept. All these theories have the same number of degrees of freedom as general relativity, which is the only parity-invariant member of this family. Modifications of general relativity can be arranged so as to become important in regions with large curvature. In this paper, we review how a certain simple modification of this sort can resolve the Schwarzschild black-hole and Kasner anisotropic singularities of general relativity. In the corresponding solutions, the fundamental connection field is regular in space-time

    Chiral perturbation theory for GR

    Full text link
    We describe a new perturbation theory for General Relativity, with the chiral first-order Einstein-Cartan action as the starting point. Our main result is a new gauge-fixing procedure that eliminates the connection-to-connection propagator. All other known first-order formalisms have this propagator non-zero, which significantly increases the combinatorial complexity of any perturbative calculation. In contrast, in the absence of the connection-to-connection propagator, our formalism leads to an effective description in which only the metric (or tetrad) propagates, there are only cubic and quartic vertices, but some vertex legs are special in that they cannot be connected by the propagator. The new formalism is the gravity analog of the well-known and powerful chiral description of Yang-Mills theory.Comment: 28 pages, multiple feynmp diagram

    A 4D gravity theory and G2-holonomy manifolds

    Get PDF
    © 2019 International Press of Boston, Inc. Bryant and Salamon gave a construction of metrics of G2 holonomy on the total space of the bundle of anti-self-dual (ASD) 2-forms over a 4-dimensional self-dual Einstein manifold. We generalise it by considering the total space of an SO(3) bundle (with fibers 3) over a 4-dimensional base, with a connection on this bundle. We make essentially the same ansatz for the calibrating 3-form, but use the curvature 2-forms instead of the ASD ones. We show that the resulting 3-form defines a metric of G2 holonomy if the connection satisfies a certain second-order PDE. This is exactly the same PDE that arises as the field equation of a certain 4-dimensional gravity theory formulated as a di_eomorphism-invariant theory of SO(3) connections. Thus, every solution of this 4-dimensional gravity theory can be lifted to a G2-holonomy metric. Unlike all previously known constructions, the theory that we lift to 7 dimensions is not topological. Thus, our construction should give rise to many new metrics of G2 holonomy. We describe several examples that are of cohomogeneity one on the base

    Anisotropic singularities in chiral modified gravity

    Get PDF
    In four space-time dimensions, there exists a special infinite-parameter family of chiral modified gravity theories. All these theories describe just two propagating polarizations of the graviton. General Relativity with an arbitrary cosmological constant is the only parity-invariant member of this family. We review how these modified gravity theories arise within the framework of pure-connection formulation. We introduce a new convenient parametrisation of this family of theories by using certain set of auxiliary fields. Modifications of General Relativity can be arranged so as to become important in regions with large Weyl curvature, while the behaviour is indistinguishable from GR where Weyl curvature is small. We show how the Kasner singularity of General Relativity is resolved in a particular class of modified gravity theories of this type, leading to solutions in which the fundamental connection field is regular all through the space-time. There arises a new asymptotically De Sitter region `behind' the would-be singularity, the complete solution thus being of a bounce type.Comment: v2: published version, 42 pages, 4 figure

    Neuronal nitric oxide synthase contributes to the regulation of hematopoiesis

    Get PDF
    Nitric oxide (NO) signaling is important for the regulation of hematopoiesis. However, the role of individual NO synthase (NOS) isoforms is unclear. Our results indicate that the neuronal NOS isoform (nNOS) regulates hematopolesis in vitro and in vivo. nNOS is expressed in adult bone marrow and fetal liver and is enriched in stromal cells. There is a strong correlation between expression of nNOS in a panel of stromal cell lines established from bone marrow and fetal liver and the ability of these cell lines to support hematopoietic stem cells; furthermore, NO donor can further increase this ability. The number of colonies generated in vitro from the bone marrow and spleen of nNOS-null mutants is increased relative to wild-type or inducible- or endothelial NOS knockout mice. These results describe a new role for nNOS beyond its action in the brain and muscle and suggest a model where nNOS, expressed in stromal cells, produces NO which acts as a paracrine regulator of hematopoietic stem cells

    Seabirds reveal mercury distribution across the North Atlantic

    Get PDF
    Author contributionsC.A. and J.F. designed research; C.A., B. Moe, A.T., S.D., V.S.B., B. Merkel, J.Å., and J.F. performed research; C.A., B. Moe, M.B.-F., A.T., S.D., V.S.B., B. Merkel, J.Å., J.L., C.P.-P., and J.F. analyzed data; C.A., B.M., V.S.B., and J.F. sample and data collection, data coordination and management, statistical methodology; H.S. sample and data contribution and Data coordination and management; D.G., M.B.-F., F. Amélineau, F. Angelier, T.A.-N., O.C., S.C.-D., J.D., K.E., K.E.E., A.E., G.W.G., M.G., S.A.H., H.H.H., M.K.J., Y. Kolbeinsson, Y. Krasnov, M.L., J.L., S.-H.L., B.O., A.P., C.P.-P., T.K.R., G.H.S., P.M.T., T.L.T., and P.B. sample and data contribution; A.T., P.F. and S.D. sample and data contribution and statistical methodology; J.Å. statistical methodology; J.F. supervision; and C.A., B. Moe, H.S., D.G., A.T., S.D., V.S.B., B. Merkel, J.Å., F. Amélineau, F. Angelier, T.A.-N., O.C., S.C.-D., J.D., K.E., K.E.E., A.E., P.F., G.W.G., M.G., S.A.H., H.H.H., Y. Kolbeinsson, Y. Krasnov, S.-H.L., B.O., A.P., T.K.R., G.H.S., P.M.T., T.L.L., P.B., and J.F. wrote the paper.Peer reviewe
    corecore