133 research outputs found

    Role of A Novel Angiogenesis FKBPL-CD44 Pathway in Preeclampsia Risk Stratification and Mesenchymal Stem Cell Treatment.

    Full text link
    ContextPreeclampsia is a leading cardiovascular complication in pregnancy lacking effective diagnostic and treatment strategies.ObjectiveTo investigate the diagnostic and therapeutic target potential of the angiogenesis proteins, FK506-binding protein like (FKBPL) and CD44.Design and interventionFKBPL and CD44 plasma concentration or placental expression were determined in women pre- or postdiagnosis of preeclampsia. Trophoblast and endothelial cell function was assessed following mesenchymal stem cell (MSC) treatment and in the context of FKBPL signaling.Settings and participantsHuman samples prediagnosis (15 and 20 weeks of gestation; n ≄ 57), or postdiagnosis (n = 18 for plasma; n = 4 for placenta) of preeclampsia were used to determine FKBPL and CD44 levels, compared to healthy controls. Trophoblast or endothelial cells were exposed to low/high oxygen, and treated with MSC-conditioned media (MSC-CM) or a FKBPL overexpression plasmid.Main outcome measuresPreeclampsia risk stratification and diagnostic potential of FKBPL and CD44 were investigated. MSC treatment effects and FKBPL-CD44 signaling in trophoblast and endothelial cells were assessed.ResultsThe CD44/FKBPL ratio was reduced in placenta and plasma following clinical diagnosis of preeclampsia. At 20 weeks of gestation, a high plasma CD44/FKBPL ratio was independently associated with the 2.3-fold increased risk of preeclampsia (odds ratio = 2.3, 95% confidence interval [CI] 1.03-5.23, P = 0.04). In combination with high mean arterial blood pressure (>82.5 mmHg), the risk further increased to 3.9-fold (95% CI 1.30-11.84, P = 0.016). Both hypoxia and MSC-based therapy inhibited FKBPL-CD44 signaling, enhancing cell angiogenesis.ConclusionsThe FKBPL-CD44 pathway appears to have a central role in the pathogenesis of preeclampsia, showing promising utilities for early diagnostic and therapeutic purposes

    Repair of Acute Respiratory Distress Syndrome in COVID-19 by Stromal Cells (REALIST-COVID Trial):A Multicentre, Randomised, Controlled Trial

    Get PDF
    RationaleMesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in COVID-19-related Acute Respiratory Distress Syndrome (ARDS).ObjectivesWe investigated safety and efficacy of ORBCEL-C (CD362-enriched, umbilical cord-derived MSCs) in COVID-related ARDS.MethodsThis multicentre, randomised, double-blind, allocation concealed, placebo-controlled trial (NCT03042143) randomised patients with moderate-to-severe COVID-related ARDS to receive ORBCEL-C (400million cells) or placebo (Plasma-Lyte148).MeasurementsThe primary safety and efficacy outcomes were incidence of serious adverse events and oxygenation index at day 7 respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2/FiO2 ratio and SOFA score. Clinical outcomes relating to duration of ventilation, length of intensive care unit and hospital stays, and mortality were collected. Long-term follow up included diagnosis of interstitial lung disease at 1 year, and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at day 0, 4 and 7.Main results60 participants were recruited (final analysis n=30 ORBCEL-C, n=29 placebo: 1 in placebo group withdrew consent). 6 serious adverse events occurred in the ORBCEL-C and 3 in the placebo group, RR 2.9(0.6-13.2)p=0.25. Day 7 mean[SD] oxygenation index did not differ (ORBCEL-C 98.357.2], placebo 96.667.3). There were no differences in secondary surrogate outcomes, nor mortality at day 28, day 90, 1 or 2 years. There was no difference in prevalence of interstitial lung disease at 1year nor significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome.ConclusionORBCEL-C MSCs were safe in moderate-to-severe COVID-related ARDS, but did not improve surrogates of pulmonary organ dysfunction. Clinical trial registration available at www.Clinicaltrialsgov, ID: NCT03042143. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/)

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Mesenchymal stem cell therapy and acute graft-versus-host disease: a review

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Efficacy of Mesenchymal Stromal Cell Therapy for Acute Lung Injury in Preclinical Animal Models: A Systematic Review

    Get PDF
    <div><p>The Acute Respiratory Distress Syndrome (ARDS) is a devastating clinical condition that is associated with a 30–40% risk of death, and significant long term morbidity for those who survive. Mesenchymal stromal cells (MSC) have emerged as a potential novel treatment as in pre-clinical models they have been shown to modulate inflammation (a major pathophysiological hallmark of ARDS) while enhancing bacterial clearance and reducing organ injury and death. A systematic search of MEDLINE, EMBASE, BIOSIS and Web of Science was performed to identify pre-clinical studies that examined the efficacy MSCs as compared to diseased controls for the treatment of Acute Lung Injury (ALI) (the pre-clinical correlate of human ARDS) on mortality, a clinically relevant outcome. We assessed study quality and pooled results using random effect meta-analysis. A total of 54 publications met our inclusion criteria of which 17 (21 experiments) reported mortality and were included in the meta-analysis. Treatment with MSCs, as compared to controls, significantly decreased the overall odds of death in animals with ALI (Odds Ratio 0.24, 95% Confidence Interval 0.18–0.34, I<sup>2</sup> 8%). Efficacy was maintained across different types of animal models and means of ALI induction; MSC origin, source, route of administration and preparation; and the clinical relevance of the model (timing of MSC administration, administration of fluids and or antibiotics). Reporting of standard MSC characterization for experiments that used human MSCs and risks of bias was generally poor, and although not statistically significant, a funnel plot analysis for overall mortality suggested the presence of publication bias. The results from our meta-analysis support that MSCs substantially reduce the odds of death in animal models of ALI but important reporting elements were sub optimal and limit the strength of our conclusions.</p></div
    • 

    corecore