21 research outputs found

    Energy-Momentum Tensor for the Electromagnetic Field in a Dielectric

    Full text link
    The total momentum of a thermodynamically closed system is unique, as is the total energy. Nevertheless, there is continuing confusion concerning the correct form of the momentum and the energy-momentum tensor for an electromagnetic field interacting with a linear dielectric medium. Here we investigate the energy and momentum in a closed system composed of a propagating electromagnetic field and a negligibly reflecting dielectric. The Gordon momentum is easily identified as the total momentum by the fact that it is, by virtue of being invariant in time, conserved. We construct continuity equations for the energy and the Gordon momentum and use the continuity equations to construct an array that has the properties of a traceless, diagonally symmetric energy-momentum tensor. Then the century-old Abraham-Minkowski momentum controversy can be viewed as a consequence of attempting to construct an energy-momentum tensor from continuity equations that contain densities that correspond to nonconserved quantities.Comment: added publication informatio

    Relativistic analysis of the dielectric Einstein box: Abraham, Minkowski and total energy-momentum tensors

    Full text link
    We analyse the "Einstein box" thought experiment and the definition of the momentum of light inside matter. We stress the importance of the total energy-momentum tensor of the closed system (electromagnetic field plus material medium) and derive in detail the relativistic expressions for the Abraham and Minkowski momenta, together with the corresponding balance equations for an isotropic and homogeneous medium. We identify some assumptions hidden in the Einstein box argument, which make it weaker than it is usually recognized. In particular, we show that the Abraham momentum is not uniquely selected as the momentum of light in this case

    Entropy Production in Relativistic Hydrodynamics

    Get PDF
    The entropy production occurring in relativistic hydrodynamical systems such as the quark-gluon plasma (QGP) formed in high-energy nuclear collisions is explored. We study mechanisms which change the composition of the fluid, i.e. particle production and/or chemical reactions, along with chemo- and thermo-diffusion. These effects complement the conventional dissipative effects of shear viscosity, bulk viscosity, and heat conductivity.Comment: 15 pages; LaTex. Accepted for publication in Physics Letters B. - Two typos corrected and one reference adde

    Derivation of fluid dynamics from kinetic theory with the 14--moment approximation

    Full text link
    We review the traditional derivation of the fluid-dynamical equations from kinetic theory according to Israel and Stewart. We show that their procedure to close the fluid-dynamical equations of motion is not unique. Their approach contains two approximations, the first being the so-called 14-moment approximation to truncate the single-particle distribution function. The second consists in the choice of equations of motion for the dissipative currents. Israel and Stewart used the second moment of the Boltzmann equation, but this is not the only possible choice. In fact, there are infinitely many moments of the Boltzmann equation which can serve as equations of motion for the dissipative currents. All resulting equations of motion have the same form, but the transport coefficients are different in each case.Comment: 15 pages, 3 figures, typos fixed and discussions added; EPJA: Topical issue on "Relativistic Hydro- and Thermodynamics

    Fluctuations of Dissipative Fluxes and the Onsager-Machlup Function

    No full text
    corecore