1,982 research outputs found

    Characterization of a multimode coplanar waveguide parametric amplifier

    Full text link
    We characterize a novel Josephson parametric amplifier based on a flux-tunable quarter-wavelength resonator. The fundamental resonance frequency is ~1GHz, but we use higher modes of the resonator for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier. We investigate and compare degenerate parametric amplification, involving a single mode, and nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-limited noise performance in both cases, and we show that the added noise can be less than 0.5 added photons in the case of low gain

    Single-shot Readout of a Superconducting Qubit using a Josephson Parametric Oscillator

    Full text link
    We propose and demonstrate a new read-out technique for a superconducting qubit by dispersively coupling it to a Josephson parametric oscillator. We employ a tunable quarter-wavelength superconducting resonator and modulate its resonant frequency at twice its value with an amplitude surpassing the threshold for parametric instability. We map the qubit states onto two distinct states of classical parametric oscillation: one oscillating state, with 185±15185\pm15 photons in the resonator, and one with zero oscillation amplitude. This high contrast obviates a following quantum-limited amplifier. We demonstrate proof-of-principle, single-shot readout performance, and present an error budget indicating that this method can surpass the fidelity threshold required for quantum computing.Comment: 11 pages, 5 figure

    Concepts in Animal Parasitology, Chapter 67: Acari (Order): Mites

    Get PDF
    Chapter 67 in Concepts in Animal Parasitology on mites (order Acari) by David Evans Walter, Gerald W. Krantz, and Evert E. Lindquist. 2024. S. L. Gardner and S. A. Gardner, editors. Zea Books, Lincoln, Nebraska, United States. doi: 10.32873/unl.dc.ciap06

    Removal of filler material from large high energy formed parts

    Get PDF
    Filler material is removed by applying steam heat at 88.99 C to underside of workpiece and allowing filler to melt and drain from the waffle grids

    Solutocapillary Convection Effects on Polymeric Membrane Morphology

    Get PDF
    Macro voids are undesirable large pores in membranes used for purification. They form when membranes are cast as thin films on a smooth surface by evaporating solvent (acetone) from a polymer solution. There are two un-tested hypotheses explaining the growth of macro voids. One states that diffusion of the non-solvent (water) is solely responsible, while the other states that solutocapillary convection is the primary cause of macro void growth. Solutocapillary convection is flow-caused by a concentration induced surface-tension gradient. Macrovoid growth in the former hypothesis is gravity independent, while in the latter it is opposed by gravity. To distinguish between these two hypotheses, experiments were designed to cast membranes in zero-gravity. A semi-automated apparatus was designed and built for casting membranes during the 20 secs of zero-g time available in parabolic aircraft flight such as NASA's KC-135. The phase changes were monitored optically, and membrane morphology was evaluated by scanning electron microscopy (SEM). These studies appear to be the first quantitative studies of membrane casting in micro-gravity which incorporate real-time data acquisition. Morphological studies of membranes cast at 0, 1, and 1.8 g revealed the presence of numerous, sparse and no macrovoids respectively. These results are consistent with the predictions of the solutocapillary hypothesis of macrovoid growth
    corecore