94 research outputs found

    Solutocapillary Convection Effects on Polymeric Membrane Morphology

    Get PDF
    Macro voids are undesirable large pores in membranes used for purification. They form when membranes are cast as thin films on a smooth surface by evaporating solvent (acetone) from a polymer solution. There are two un-tested hypotheses explaining the growth of macro voids. One states that diffusion of the non-solvent (water) is solely responsible, while the other states that solutocapillary convection is the primary cause of macro void growth. Solutocapillary convection is flow-caused by a concentration induced surface-tension gradient. Macrovoid growth in the former hypothesis is gravity independent, while in the latter it is opposed by gravity. To distinguish between these two hypotheses, experiments were designed to cast membranes in zero-gravity. A semi-automated apparatus was designed and built for casting membranes during the 20 secs of zero-g time available in parabolic aircraft flight such as NASA's KC-135. The phase changes were monitored optically, and membrane morphology was evaluated by scanning electron microscopy (SEM). These studies appear to be the first quantitative studies of membrane casting in micro-gravity which incorporate real-time data acquisition. Morphological studies of membranes cast at 0, 1, and 1.8 g revealed the presence of numerous, sparse and no macrovoids respectively. These results are consistent with the predictions of the solutocapillary hypothesis of macrovoid growth

    TRPA1 and Sympathetic Activation Contribute to Increased Risk of Triggered Cardiac Arrhythmias in Hypertensive Rats Exposed to Diesel Exhaust

    Get PDF
    Background: Diesel exhaust (DE), which is emitted from on- and off-road sources, is a complex mixture of toxic gaseous and particulate components that leads to triggered adverse cardiovascular effects such as arrhythmias

    Whole and Particle-Free Diesel Exhausts Differentially Affect Cardiac Electrophysiology, Blood Pressure, and Autonomic Balance in Heart Failure–Prone Rats

    Get PDF
    Epidemiological studies strongly link short-term exposures to vehicular traffic and particulate matter (PM) air pollution with adverse cardiovascular (CV) events, especially in those with preexisting CV disease. Diesel engine exhaust is a key contributor to urban ambient PM and gaseous pollutants. To determine the role of gaseous and particulate components in diesel exhaust (DE) cardiotoxicity, we examined the effects of a 4-h inhalation of whole DE (wDE) (target PM concentration: 500 µg/m3) or particle-free filtered DE (fDE) on CV physiology and a range of markers of cardiopulmonary injury in hypertensive heart failure–prone rats. Arterial blood pressure (BP), electrocardiography, and heart rate variability (HRV), an index of autonomic balance, were monitored. Both fDE and wDE decreased BP and prolonged PR interval during exposure, with more effects from fDE, which additionally increased HRV triangular index and decreased T-wave amplitude. fDE increased QTc interval immediately after exposure, increased atrioventricular (AV) block Mobitz II arrhythmias shortly thereafter, and increased serum high-density lipoprotein 1 day later. wDE increased BP and decreased HRV root mean square of successive differences immediately postexposure. fDE and wDE decreased heart rate during the 4th hour of postexposure. Thus, DE gases slowed AV conduction and ventricular repolarization, decreased BP, increased HRV, and subsequently provoked arrhythmias, collectively suggesting parasympathetic activation; conversely, brief BP and HRV changes after exposure to particle-containing DE indicated a transient sympathetic excitation. Our findings suggest that whole- and particle-free DE differentially alter CV and autonomic physiology and may potentially increase risk through divergent pathways

    Dobutamine “Stress” Test and Latent Cardiac Susceptibility to Inhaled Diesel Exhaust in Normal and Hypertensive Rats

    Get PDF
    Background: Exercise “stress” testing is a screening tool used to determine the amount of stress for which the heart can compensate before developing abnormal rhythm or ischemia, particularly in susceptible persons. Although this approach has been used to assess risk in humans exposed to air pollution, it has never been applied to rodent studies

    An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Dobutamine Challenges in Heart Failure–Prone Rats

    Get PDF
    Cardiac disease exacerbation is associated with short-term exposure to vehicular emissions. Diesel exhaust (DE) might impair cardiac performance in part through perturbing efferent sympathetic and parasympathetic autonomic nervous system (ANS) input to the heart. We hypothesized that acute changes in ANS balance mediate decreased cardiac performance upon DE inhalation. Young adult heart failure–prone rats were implanted with radiotelemeters to measure heart rate (HR), HR variability (HRV), blood pressure (BP), core body temperature, and pre-ejection period (PEP, a contractility index). Animals pretreated with sympathetic antagonist (atenolol), parasympathetic antagonist (atropine), or saline were exposed to DE (500 µg/m3 fine particulate matter, 4h) or filtered air and then treadmill exercise challenged. At 1 day postexposure, separate rats were catheterized for left ventricular pressure (LVP), contractility, and lusitropy and assessed for autonomic influence using the sympathoagonist dobutamine and surgical vagotomy. During DE exposure, atenolol inhibited increases in HR, BP, and contractility, but not body temperature, suggesting a role for sympathetic dominance. During treadmill recovery at 4h post-DE exposure, HR and HRV indicated parasympathetic dominance in saline- and atenolol-pretreated groups that atropine inhibited. Conversely, at treadmill recovery 21h post-DE exposure, HRV and PEP indicated sympathetic dominance and subsequently diminished contractility that only atenolol inhibited. LVP at 1 day postexposure indicated that DE impaired contractility and lusitropy while abolishing parasympathetic-regulated cardiac responses to dobutamine. This is the first evidence that air pollutant inhalation both causes time-dependent oscillations between sympathetic and parasympathetic dominance and decreases cardiac performance via aberrant sympathetic dominance

    Diesel Exhaust Inhalation Increases Cardiac Output, Bradyarrhythmias, and Parasympathetic Tone in Aged Heart Failure–Prone Rats

    Get PDF
    Acute air pollutant inhalation is linked to adverse cardiac events and death, and hospitalizations for heart failure. Diesel engine exhaust (DE) is a major air pollutant suspected to exacerbate preexisting cardiac conditions, in part, through autonomic and electrophysiologic disturbance of normal cardiac function. To explore this putative mechanism, we examined cardiophysiologic responses to DE inhalation in a model of aged heart failure–prone rats without signs or symptoms of overt heart failure. We hypothesized that acute DE exposure would alter heart rhythm, cardiac electrophysiology, and ventricular performance and dimensions consistent with autonomic imbalance while increasing biochemical markers of toxicity. Spontaneously hypertensive heart failure rats (16 months) were exposed once to whole DE (4h, target PM2.5 concentration: 500 µg/m3) or filtered air. DE increased multiple heart rate variability (HRV) parameters during exposure. In the 4h after exposure, DE increased cardiac output, left ventricular volume (end diastolic and systolic), stroke volume, HRV, and atrioventricular block arrhythmias while increasing electrocardiographic measures of ventricular repolarization (i.e., ST and T amplitudes, ST area, T-peak to T-end duration). DE did not affect heart rate relative to air. Changes in HRV positively correlated with postexposure changes in bradyarrhythmia frequency, repolarization, and echocardiographic parameters. At 24h postexposure, DE-exposed rats had increased serum C-reactive protein and pulmonary eosinophils. This study demonstrates that cardiac effects of DE inhalation are likely to occur through changes in autonomic balance associated with modulation of cardiac electrophysiology and mechanical function and may offer insights into the adverse health effects of traffic-related air pollutants

    One-Month Diesel Exhaust Inhalation Produces Hypertensive Gene Expression Pattern in Healthy Rats

    Get PDF
    BackgroundExposure to diesel exhaust (DE) is linked to vasoconstriction, endothelial dysfunction, and myocardial ischemia in compromised individuals.ObjectiveWe hypothesized that DE inhalation would cause greater inflammation, hematologic alterations, and cardiac molecular impairment in spontaneously hypertensive (SH) rats than in healthy Wistar Kyoto (WKY) rats.Methods and resultsMale rats (12–14 weeks of age) were exposed to air or DE from a 30-kW Deutz engine at 500 or 2,000 μg/m3, 4 hr/day, 5 days/week for 4 weeks. Neutrophilic influx was noted in the lung lavage fluid of both strains, but injury markers were minimally changed. Particle-laden macrophages were apparent histologically in DE-exposed rats. Lower baseline cardiac anti-oxidant enzyme activities were present in SH than in WKY rats; however, no DE effects were noted. Cardiac mitochondrial aconitase activity decreased after DE exposure in both strains. Electron microscopy indicated abnormalities in cardiac mitochondria of control SH but no DE effects. Gene expression profiling demonstrated alterations in 377 genes by DE in WKY but none in SH rats. The direction of DE-induced changes in WKY mimicked expression pattern of control SH rats without DE. Most genes affected by DE were down-regulated in WKY. The same genes were down-regulated in SH without DE producing a hypertensive-like expression pattern. The down-regulated genes included those that regulate compensatory response, matrix metabolism, mitochondrial function, and oxidative stress response. No up-regulation of inflammatory genes was noted.ConclusionsWe provide the evidence that DE inhalation produces a hypertensive-like cardiac gene expression pattern associated with mitochondrial oxidative stress in healthy rats

    Female genital schistosomiasis as an evidence of a neglected cause for reproductive ill-health: a retrospective histopathological study from Tanzania

    Get PDF
    BACKGROUND: Schistosomiasis affects the reproductive health of women. Described sequelae are ectopic pregnancy, infertility, abortion, and cervical lesions and symptoms mimicking cervical cancer and STIs. There are indications that cervical schistosomiasis lesions could become co-factors for viral infection such as HIV and HPV. METHODS: In a retrospective descriptive histopathological study clinical specimens sent between 1999 and 2005 to the pathology department of a consultant hospital in Tanzania were reviewed to analyse the occurrence and features of schistosomiasis in female genital organs. RESULTS: During the study period, schistosomiasis was histopathologically diagnosed in 423 specimens from different organs (0.7% of all specimens examined in the study period), out of those 40% were specimens from female and male organs. The specimens were sent from 24 hospitals in 13 regions of mainland Tanzania. Female genital schistosomiasis was diagnosed in 125 specimens from 111 patients. The main symptoms reported were bleeding disorders (48%), ulcer (17%), tumor (20%), lower abdominal pain (11%) and infertility (7%). The majority of cases with genital schistosomiasis were diagnosed in cervical tissue (71 cases). The confirmation of cervical cancer was specifically requested for 53 women, but the diagnosis could only be verified for 13 patients (25%), in 40 cases only severe cervical schistosomiasis was diagnosed. Vulval/labial schistosomiasis was seen in specimens from young women. Infertility was reported in four patients with schistosomiasis of the Fallopian tubes. CONCLUSION: Genital schistosomiasis adds to the disease burden of women in all age groups. Pathological consequences due to the involvement of different genital organs can be damaging for the affected women. Clinical unawareness of genital schistosomiasis can lead to misdiagnosis and therefore false and ineffective therapy. In endemic areas cervical schistosomiasis should be considered as differential diagnosis of cancer
    • …
    corecore