130 research outputs found

    Partitioning the vertex set of GG to make G □ HG\,\Box\, H an efficient open domination graph

    Full text link
    A graph is an efficient open domination graph if there exists a subset of vertices whose open neighborhoods partition its vertex set. We characterize those graphs GG for which the Cartesian product Gâ–ˇHG \Box H is an efficient open domination graph when HH is a complete graph of order at least 3 or a complete bipartite graph. The characterization is based on the existence of a certain type of weak partition of V(G)V(G). For the class of trees when HH is complete of order at least 3, the characterization is constructive. In addition, a special type of efficient open domination graph is characterized among Cartesian products Gâ–ˇHG \Box H when HH is a 5-cycle or a 4-cycle.Comment: 16 pages, 2 figure

    The α\u3csub\u3e1D\u3c/sub\u3e-Adrenergic Receptor Is Expressed Intracellularly and Coupled to Increases in Intracellular Calcium and Reactive Oxygen Species in Human Aortic Smooth Muscle Cells

    Get PDF
    Background: The cellular localization of the α1D-adrenergic receptor (α1D-AR) is controversial. Studies in heterologous cell systems have shown that this receptor is expressed in intracellular compartments. Other studies show that dimerization with other ARs promotes the cell surface expression of the α1D-AR. To assess the cellular localization in vascular smooth muscle cells, we developed an adenoviral vector for the efficient expression of a GFP labeled α1D-AR. We also measured cellular localization with immunocytochemistry. Intracellular calcium levels, measurement of reactive oxygen species and contraction of the rat aorta were used as measures of functional activity. Results: The adenovirally expressed α1D-AR was expressed in intracellular compartments in human aortic smooth muscle cells. The intracellular localization of the α1D-AR was also demonstrated with immunocytochemistry using an α1D-AR specific antibody. RT-PCR analysis detected mRNA transcripts corresponding to the α1A-α1B- and α1D-ARs in these aortic smooth muscle cells. Therefore, the presence of the other α1-ARs, and the potential for dimerization with these receptors, does not alter the intracellular expression of the α1D-AR. Despite the predominant intracellular localization in vascular smooth muscle cells, the α1D-AR remained signaling competent and mediated the phenylephrine-induced increases in intracellular calcium. The α1D-AR also was coupled to the generation of reactive oxygen species in smooth muscle cells. There is evidence from heterologous systems that the α1D-AR heterodimerizes with the β2-AR and that desensitization of the β2-AR results in α1D-AR desensitization. In the rat aorta, desensitization of the β2-AR had no effect on contractile responses mediated by the α1D-AR. Conclusion: Our results suggest that the dimerization of the α1D-AR with other ARs does not alter the cellular expression or functional response characteristics of the α1D-AR

    The α1D-adrenergic receptor is expressed intracellularly and coupled to increases in intracellular calcium and reactive oxygen species in human aortic smooth muscle cells

    Get PDF
    Background: The cellular localization of the α1D-adrenergic receptor (α1D-AR) is controversial. Studies in heterologous cell systems have shown that this receptor is expressed in intracellular compartments. Other studies show that dimerization with other ARs promotes the cell surface expression of the α1D-AR. To assess the cellular localization in vascular smooth muscle cells, we developed an adenoviral vector for the efficient expression of a GFP labeled α1D-AR. We also measured cellular localization with immunocytochemistry. Intracellular calcium levels, measurement of reactive oxygen species and contraction of the rat aorta were used as measures of functional activity. Results: The adenovirally expressed α1D-AR was expressed in intracellular compartments in human aortic smooth muscle cells. The intracellular localization of the α1D-AR was also demonstrated with immunocytochemistry using an α1D-AR specific antibody. RT-PCR analysis detected mRNA transcripts corresponding to the α1A-α1B- and α1D-ARs in these aortic smooth muscle cells. Therefore, the presence of the other α1-ARs, and the potential for dimerization with these receptors, does not alter the intracellular expression of the α1D-AR. Despite the predominant intracellular localization in vascular smooth muscle cells, the α1D-AR remained signaling competent and mediated the phenylephrine-induced increases in intracellular calcium. The α1D-AR also was coupled to the generation of reactive oxygen species in smooth muscle cells. There is evidence from heterologous systems that the α1D-AR heterodimerizes with the β2-AR and that desensitization of the β2-AR results in α1D-AR desensitization. In the rat aorta, desensitization of the β2-AR had no effect on contractile responses mediated by the α1D-AR. Conclusion: Our results suggest that the dimerization of the α1D-AR with other ARs does not alter the cellular expression or functional response characteristics of the α1D-AR

    Q134R: Small Chemical Compound with NFAT Inhibitory Properties Improves Behavioral Performance and Synapse Function in Mouse Models of Amyloid Pathology

    Get PDF
    Inhibition of the protein phosphatase calcineurin (CN) ameliorates pathophysiologic and cognitive changes in aging rodents and mice with aging-related Alzheimer\u27s disease (AD)-like pathology. However, concerns over adverse effects have slowed the transition of common CN-inhibiting drugs to the clinic for the treatment of AD and AD-related disorders. Targeting substrates of CN, like the nuclear factor of activated T cells (NFATs), has been suggested as an alternative, safer approach to CN inhibitors. However, small chemical inhibitors of NFATs have only rarely been described. Here, we investigate a newly developed neuroprotective hydroxyquinoline derivative (Q134R) that suppresses NFAT signaling, without inhibiting CN activity. Q134R partially inhibited NFAT activity in primary rat astrocytes, but did not prevent CN-mediated dephosphorylation of a non-NFAT target, either in vivo, or in vitro. Acute (≤1 week) oral delivery of Q134R to APP/PS1 (12 months old) or wild-type mice (3–4 months old) infused with oligomeric Aβ peptides led to improved Y maze performance. Chronic (≥3 months) oral delivery of Q134R appeared to be safe, and, in fact, promoted survival in wild-type (WT) mice when given for many months beyond middle age. Finally, chronic delivery of Q134R to APP/PS1 mice during the early stages of amyloid pathology (i.e., between 6 and 9 months) tended to reduce signs of glial reactivity, prevented the upregulation of astrocytic NFAT4, and ameliorated deficits in synaptic strength and plasticity, without noticeably altering parenchymal Aβ plaque pathology. The results suggest that Q134R is a promising drug for treating AD and aging-related disorders

    Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells

    Get PDF
    Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystalline films of chemically identical molecules offer a promising alternative and show that photoexcitation of α-sexithiophene (α-6T) films results in efficient charge generation. This leads to α-6T based homojunction organic solar cells with an external quantum efficiency reaching up to 44% and an open-circuit voltage of 1.61 V. Morphological, photoemission, and modelling studies show that boundaries between α-6T crystalline domains with different orientations generate an electrostatic landscape with an interfacial energy offset of 0.4 eV, which promotes the formation of hybridised exciton/charge-transfer states at the interface, dissociating efficiently into free charges. Our findings open new avenues for organic solar cell design where material energetics are tuned through molecular electrostatic engineering and mesoscale structural control
    • …
    corecore