221 research outputs found

    Differential cross sections for muonic atom scattering in solid hydrogenic targets

    Full text link
    The differential cross sections for low-energy muonic hydrogen atom scattering in solid molecular H2_2, D2_2 and T2_2 targets under low pressure have been calculated for various temperatures. The polycrystalline fcc and hcp structure of the solid hydrogenic targets are considered. The Bragg and phonon scattering processes are described using the Debye model of a solid. The calculated cross sections are used for Monte Carlo simulations of the muonic atom slowing down in these targets. They have been successfully applied for a description of the production of the muonic atom beams in the multilayer hydrogenic crystals.Comment: 23 pages, 19 figures, 2 table

    Nanostratification of optical excitation in self-interacting 1D arrays

    Full text link
    The major assumption of the Lorentz-Lorenz theory about uniformity of local fields and atomic polarization in dense material does not hold in finite groups of atoms, as we reported earlier [A. E. Kaplan and S. N. Volkov, Phys. Rev. Lett., v. 101, 133902 (2008)]. The uniformity is broken at sub-wavelength scale, where the system may exhibit strong stratification of local field and dipole polarization, with the strata period being much shorter than the incident wavelength. In this paper, we further develop and advance that theory for the most fundamental case of one-dimensional arrays, and study nanoscale excitation of so called "locsitons" and their standing waves (strata) that result in size-related resonances and related large field enhancement in finite arrays of atoms. The locsitons may have a whole spectrum of spatial frequencies, ranging from long waves, to an extent reminiscent of ferromagnetic domains, -- to super-short waves, with neighboring atoms alternating their polarizations, which are reminiscent of antiferromagnetic spin patterns. Of great interest is the new kind of "hybrid" modes of excitation, greatly departing from any magnetic analogies. We also study differences between Ising-like near-neighbor approximation and the case where each atom interacts with all other atoms in the array. We find an infinite number of "exponential eigenmodes" in the lossless system in the latter case. At certain "magic" numbers of atoms in the array, the system may exhibit self-induced (but linear in the field) cancellation of resonant local-field suppression. We also studied nonlinear modes of locsitons and found optical bistability and hysteresis in an infinite array for the simplest modes.Comment: 39 pages, 5 figures; v2: Added the Conclusions section, corrected a typo in Eq. (5.3), corrected minor stylistic and grammatical imperfection

    Mathematical modelling of haemorrhagic transformation within a multiscale microvasculature network

    Get PDF
    Abstract Objective. Haemorrhagic transformation (HT) is one of the most common complications after ischaemic stroke, caused by damage to the blood–brain barrier (BBB) that could be the result of stroke progression or a complication of stroke treatment with reperfusion therapy. The aim of this study is to develop further a previous simple HT mathematical model into an enlarged multiscale microvasculature model in order to investigate the effects of HT on the surrounding tissue and vasculature. In addition, this study investigates the relationship between tissue displacement and vascular geometry. Approach. By modelling tissue displacement, capillary compression, hydraulic conductivity in tissue and vascular permeability, we establish a mathematical model to describe the change of intracranial pressure (ICP) surrounding the damaged vascular bed after HT onset, applied to a 3D multiscale microvasculature. The use of a voxel-scale model then enables us to compare our HT simulation with available clinical imaging data for perfusion and cerebral blood volume ( C B V ) in the multiscale microvasculature network. Main results. We showed that the haematoma diameter and the maximum tissue displacement are approximately proportional to the diameter of the breakdown vessel. Based on the voxel-scale model, we found that perfusion reduces by approximately 13 – 17 % and C B V reduces by around 20 – 25 % after HT onset due to the effect of capillary compression caused by increased interstitial pressure. The results are in good agreement with the limited experimental data. Significance. This model, by enabling us to bridge the gap between the microvascular scale and clinically measurable parameters, providing a foundation for more detailed validation and understanding of HT in patients.</jats:p

    Quantum and Classical Orientational Ordering in Solid Hydrogen

    Full text link
    We present a unified view of orientational ordering in phases I, II, and III of solid hydrogen. Phases II and III are orientationally ordered, while the ordering objects in phase II are angular momenta of rotating molecules, and in phase III the molecules themselves. This concept provides quantitative explanation of the vibron softening, libron and roton spectra, and increase of the IR vibron oscillator strength in phase III. The temperature dependence of the effective charge parallels the frequency shifts of the IR and Raman vibrons. All three quantities are linear in the order parameter.Comment: Replaced with the final text, accepted for publication in PRL. 1 Fig. added. Misc. text revision

    Higher order glass-transition singularities in colloidal systems with attractive interactions

    Full text link
    The transition from a liquid to a glass in colloidal suspensions of particles interacting through a hard core plus an attractive square-well potential is studied within the mode-coupling-theory framework. When the width of the attractive potential is much shorter than the hard-core diameter, a reentrant behavior of the liquid-glass line, and a glass-glass-transition line are found in the temperature-density plane of the model. For small well-width values, the glass-glass-transition line terminates in a third order bifurcation point, i.e. in a A_3 (cusp) singularity. On increasing the square-well width, the glass-glass line disappears, giving rise to a fourth order A_4 (swallow-tail) singularity at a critical well width. Close to the A_3 and A_4 singularities the decay of the density correlators shows stretching of huge dynamical windows, in particular logarithmic time dependence.Comment: 19 pages, 12 figures, Phys. Rev. E, in prin

    Polarization and Strong Infra-Red Activity in Compressed Solid Hydrogen

    Full text link
    Under a pressure of ~150 GPa solid molecular hydrogen undergoes a phase transition accompanied by a dramatic rise in infra-red absorption in the vibron frequency range. We use the Berry's phase approach to calculate the electric polarization in several candidate structures finding large, anisotropic dynamic charges and strongly IR-active vibron modes. The polarization is shown to be greatly affected by the overlap between the molecules in the crystal, so that the commonly used Clausius-Mossotti description in terms of polarizable, non-overlapping molecular charge densities is inadequate already at low pressures and even more so for the compressed solid.Comment: To appear in Phys. Rev. Let

    Fluctuations and Dissipation of Coherent Magnetization

    Full text link
    A quantum mechanical model is used to derive a generalized Landau-Lifshitz equation for a magnetic moment, including fluctuations and dissipation. The model reproduces the Gilbert-Brown form of the equation in the classical limit. The magnetic moment is linearly coupled to a reservoir of bosonic degrees of freedom. Use of generalized coherent states makes the semiclassical limit more transparent within a path-integral formulation. A general fluctuation-dissipation theorem is derived. The magnitude of the magnetic moment also fluctuates beyond the Gaussian approximation. We discuss how the approximate stochastic description of the thermal field follows from our result. As an example, we go beyond the linear-response method and show how the thermal fluctuations become anisotropy-dependent even in the uniaxial case.Comment: 22 page

    The Free Energy of the Quantum Heisenberg Ferromagnet at Large Spin

    Full text link
    We consider the spin-S ferromagnetic Heisenberg model in three dimensions, in the absence of an external field. Spin wave theory suggests that in a suitable temperature regime the system behaves effectively as a system of non-interacting bosons (magnons). We prove this fact at the level of the specific free energy: if S S \to \infty and the inverse temperature β0 \beta \to 0 in such a way that βS \beta S stays constant, we rigorously show that the free energy per unit volume converges to the one suggested by spin wave theory. The proof is based on the localization of the system in small boxes and on upper and lower bounds on the local free energy, and it also provides explicit error bounds on the remainder.Comment: 11 pages, pdfLate
    corecore