42 research outputs found

    Lymphapheresis in organ transplantation: preliminary report.

    Get PDF
    Reduction of lymphoid tissue by splenectomy and/or thymectomy has been used as a part of immunosuppression in organ transplantation (4). More recently Walker (7), Johnson (2), Franksson (1) and Starzl (5,6) and their associates have shown that chronic depletion of lymphocytes by thoracic duct drainage decreases the incidence of rejection and hence increases renal graft survival. Mechanical removal of lymphocytes from circulation peripheral blood should theoretically achieve the same or similar effect on the immunity as thoracic duct drainage. Since September, 1979, five organ transplant recipients have received multiple lymphocytapheresis by IBM 2997 Blood Cell Separator as a mechanical pretransplant immunosuppression. The changes in cellular and humoral immunity and the clinical outcome are presented in this report

    Inducing persistent flow disturbances accelerates atherogenesis and promotes thin cap fibroatheroma development in D374Y-PCSK9 hypercholesterolemic minipigs

    Get PDF
    BACKGROUND: -Although disturbed flow is thought to play a central role in the development of advanced coronary atherosclerotic plaques, no causal relationship has been established. We evaluated whether inducing disturbed flow would cause the development of advanced coronary plaques, including thin cap fibroatheroma (TCFA). METHODS AND RESULTS: -D374Y-PCSK9 hypercholesterolemic minipigs (N=5) were instrumented with an intracoronary shear-modifying stent (SMS). Frequency-domain optical coherence tomography was obtained at baseline, immediately post-stent, 19, and 34 weeks and used to compute shear stress metrics of disturbed flow. At 34 weeks, plaque type was assessed within serially-collected histological sections and co-registered to the distribution of each shear metric. The SMS caused a flow-limiting stenosis and blood flow exiting the SMS caused regions of increased shear stress on the outer curvature and large regions of low and multidirectional shear stress on the inner curvature of the vessel. As a result, plaque burden was ~3-fold higher downstream of the SMS compared to both upstream of the SMS and in the control artery (p<0.001). Advanced plaques were also primarily observed downstream of the SMS, in locations initially exposed to both low (p<0.002) and multidirectional (p<0.002) shear stress. TCFA regions demonstrated significantly lower shear stress that persisted over the duration of the study compared to other plaque types (p<0.005). CONCLUSIONS: -These data support a causal role for lowered and multidirectional shear stress in the initiation of advanced coronary atherosclerotic plaques. Persistently lowered shear stress appears to be the principal flow disturbance needed for the formation of TCFA

    Human telomerase activity regulation

    Get PDF
    Telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells. Thus, it has become a very promising target for anticancer therapy. The cell proliferative potential can be limited by replication end problem, due to telomeres shortening, which is overcome in cancer cells by telomerase activity or by alternative telomeres lengthening (ALT) mechanism. However, this multisubunit enzymatic complex can be regulated at various levels, including expression control but also other factors contributing to the enzyme phosphorylation status, assembling or complex subunits transport. Thus, we show that the telomerase expression targeting cannot be the only possibility to shorten telomeres and induce cell apoptosis. It is important especially since the transcription expression is not always correlated with the enzyme activity which might result in transcription modulation failure or a possibility for the gene therapy to be overcome. This review summarizes the current state of knowledge of numerous telomerase regulation mechanisms that take place after telomerase subunits coding genes transcription. Thus we show the possible mechanisms of telomerase activity regulation which might become attractive anticancer therapy targets

    The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury

    Get PDF
    The migration of polymorphonuclear granulocytes (PMN) into the brain parenchyma and release of their abundant proteases are considered the main causes of neuronal cell death and reperfusion injury following ischemia. Yet, therapies targeting PMN egress have been largely ineffective. To address this discrepancy we investigated the temporo-spatial localization of PMNs early after transient ischemia in a murine transient middle cerebral artery occlusion (tMCAO) model and human stroke specimens. Using specific markers that distinguish PMN (Ly6G) from monocytes/macrophages (Ly6C) and that define the cellular and basement membrane boundaries of the neurovascular unit (NVU), histology and confocal microscopy revealed that virtually no PMNs entered the infarcted CNS parenchyma. Regardless of tMCAO duration, PMNs were mainly restricted to luminal surfaces or perivascular spaces of cerebral vessels. Vascular PMN accumulation showed no spatial correlation with increased vessel permeability, enhanced expression of endothelial cell adhesion molecules, platelet aggregation or release of neutrophil extracellular traps. Live cell imaging studies confirmed that oxygen and glucose deprivation followed by reoxygenation fail to induce PMN migration across a brain endothelial monolayer under flow conditions in vitro. The absence of PMN infiltration in infarcted brain tissues was corroborated in 25 human stroke specimens collected at early time points after infarction. Our observations identify the NVU rather than the brain parenchyma as the site of PMN action after CNS ischemia and suggest reappraisal of targets for therapies to reduce reperfusion injury after stroke

    Steering Epitaxial Growth

    No full text
    Attractive dispersion forces, active between incident atoms and the substrate, cause preferential arrival of atoms on protruding parts on growing film surfaces. This phenomenon, which we refer to as “steering”, can give rise to significant flux redistribution. The lack of incident flux homogeneity, disregarded so far in growth studies, contributes to enhanced roughness of the growth front. This principal disadvantage can be turned around. In a quite narrow window of polar angles of incidence, it becomes possible to fabricate one-dimensional arrays of ripples oriented perpendicular to the plane of incidence. Several aspects of the mechanism, as well as an application of one-dimensional magnetic aggregates, are discussed
    corecore