5 research outputs found

    Forest Carbon Sequestration under the U.S. Biofuel Energy Policies

    Get PDF
    This paper analyzes impacts of the U.S. biofuel energy policies on the carbon sequestration by forest products, which is expressed as Harvested Wood Products (HWP) Contribution under the United Nations Framework Convention on Climate Change. Estimation for HWP Contribution is based on tracking carbon stock stored in wood and paper products in use and in solid-waste disposal sites (SWDS) from domestic consumption, harvests, imports, and exports. For this analysis, we hypothesize four alternative scenarios using the existing and pending U.S. energy policies by requirements for the share of biofuel to total energy consumption, and solve partial equilibrium for the U.S. timber market by 2030 for each scenario. The U.S. Forest Products Module (USFPM), created by USDA Forest Service Lab, operating within the Global Forest Products Model (GFPM) is utilized for projecting productions, supplies, and trade quantities for the U.S. timber market equilibrium. Based on those timber market components, we estimate scenario-specific HWP Contributions under the Production, the Stock Change, and the Atmospheric Approach suggested by Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories using WOODCARB II created by VTT Technical Research Centre of Finland and modified by USDA Forest Service Lab. Lastly, we compare estimated results across alternative scenarios. Results show that HWP Contributions for the baseline scenario in 2009 for all approaches are estimated higher than estimates reported by U.S. Environmental Protection Agency in 2011, (e.g., 22.64 Tg C/ year vs 14.80 Tg C/ year under the Production Approach), which is due to the economic recovery, especially in housing construction, assumed in USFPM/GFPM. Projected HWP Contribution estimates show that the Stock Change Approach, which used to provide the highest estimates before 2009, estimate HWP Contribution lowest after 2009 due to the declining annual net imports. Though fuel wood consumption is projected to be expanded as an alternative scenario requires higher wood fuel share to total energy consumption, the overall impacts on the expansion in other timber products are very modest across scenarios in USFPM/GFPM. Those negligible impacts lead to small differences of HWP Contribution estimates under all approaches across alternative scenarios. This is explained by the points that increasing logging residues are more crucial for expansion in fuel wood projections rather than the expansion of forest sector itself, and that the current HWP Contribution does not include carbon held in fuel wood products by its definition.Forest Products, Carbon Sequestration, Biofuel Policies, HWP Contribution, Resource /Energy Economics and Policy,

    Benthic assemblages are more predictable than fish assemblages at an island scale

    Get PDF
    Ā© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sandin, S. A., Alcantar, E., Clark, R., de Leon, R., Dilrosun, F., Edwards, C. B., Estep, A. J., Eynaud, Y., French, B. J., Fox, M. D., Grenda, D., Hamilton, S. L., Kramp, H., Marhaver, K. L., Miller, S. D., Roach, T. N. F., Seferina, G., Silveira, C. B., Smith, J. E., Zgliczynski, B. J., & Vermeij, M. J. A. Benthic assemblages are more predictable than fish assemblages at an island scale. Coral Reefs, 41, (2022.): 1031ā€“1043, https://doi.org/10.1007/s00338-022-02272-5.Decades of research have revealed relationships between the abundance of coral reef taxa and local conditions, especially at small scales. However, a rigorous test of covariation requires a robust dataset collected across wide environmental or experimental gradients. Here, we surveyed spatial variability in the densities of major coral reef functional groups at 122 sites along a 70 km expanse of the leeward, forereef habitat of CuraƧao in the southern Caribbean. These data were used to test the degree to which spatial variability in community composition could be predicted based on assumed functional relationships and site-specific anthropogenic, physical, and ecological conditions. In general, models revealed less power to describe the spatial variability of fish biomass than cover of reef builders (R2 of best-fit models: 0.25 [fish] and 0.64 [reef builders]). The variability in total benthic cover of reef builders was best described by physical (wave exposure and reef relief) and ecological (turf algal height and coral recruit density) predictors. No metric of anthropogenic pressure was related to spatial variation in reef builder cover. In contrast, total fish biomass showed a consistent (albeit weak) association with anthropogenic predictors (fishing and diving pressure). As is typical of most environmental gradients, the spatial patterns of both fish biomass density and reef builder cover were spatially autocorrelated. Residuals from the best-fit model for fish biomass retained a signature of spatial autocorrelation while the best-fit model for reef builder cover removed spatial autocorrelation, thus reinforcing our finding that environmental predictors were better able to describe the spatial variability of reef builders than that of fish biomass. As we seek to understand spatial variability of coral reef communities at the scale of most management units (i.e., at kilometer- to island-scales), distinct and scale-dependent perspectives will be needed when considering different functional groups.This research and the larger efforts of Blue Halo Curacao were supported by funding from the Waitt Institute and with permissions from the Government of Curacao, Ministry of Health, Environment, and Nature. Field logistics were further supported by the Waitt Institute vessel crew, CARMABI Foundation, The Dive Shop Curacao, and Dive Charter Curacao

    Forest Carbon Sequestration under the U.S. Biofuel Energy Policies

    No full text
    This paper analyzes impacts of the U.S. biofuel energy policies on the carbon sequestration by forest products, which is expressed as Harvested Wood Products (HWP) Contribution under the United Nations Framework Convention on Climate Change. Estimation for HWP Contribution is based on tracking carbon stock stored in wood and paper products in use and in solid-waste disposal sites (SWDS) from domestic consumption, harvests, imports, and exports. For this analysis, we hypothesize four alternative scenarios using the existing and pending U.S. energy policies by requirements for the share of biofuel to total energy consumption, and solve partial equilibrium for the U.S. timber market by 2030 for each scenario. The U.S. Forest Products Module (USFPM), created by USDA Forest Service Lab, operating within the Global Forest Products Model (GFPM) is utilized for projecting productions, supplies, and trade quantities for the U.S. timber market equilibrium. Based on those timber market components, we estimate scenario-specific HWP Contributions under the Production, the Stock Change, and the Atmospheric Approach suggested by Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories using WOODCARB II created by VTT Technical Research Centre of Finland and modified by USDA Forest Service Lab. Lastly, we compare estimated results across alternative scenarios. Results show that HWP Contributions for the baseline scenario in 2009 for all approaches are estimated higher than estimates reported by U.S. Environmental Protection Agency in 2011, (e.g., 22.64 Tg C/ year vs 14.80 Tg C/ year under the Production Approach), which is due to the economic recovery, especially in housing construction, assumed in USFPM/GFPM. Projected HWP Contribution estimates show that the Stock Change Approach, which used to provide the highest estimates before 2009, estimate HWP Contribution lowest after 2009 due to the declining annual net imports. Though fuel wood consumption is projected to be expanded as an alternative scenario requires higher wood fuel share to total energy consumption, the overall impacts on the expansion in other timber products are very modest across scenarios in USFPM/GFPM. Those negligible impacts lead to small differences of HWP Contribution estimates under all approaches across alternative scenarios. This is explained by the points that increasing logging residues are more crucial for expansion in fuel wood projections rather than the expansion of forest sector itself, and that the current HWP Contribution does not include carbon held in fuel wood products by its definition

    Modeling future U.S. forest sector market and trade impacts of expansion in wood energy consumption

    No full text
    This paper describes an approach to modeling U.S. forest sector market and trade impacts of expansion in domestic wood energy consumption under hypothetical future U.S. wood biomass energy policy scenarios. The U.S. Forest Products Module (USFPM) was created to enhance the modeling of the U.S. forest sector within the Global Forest Products Model (GFPM), providing a more detailed representation of U.S. regional timber supply and wood residue markets. Scenarios were analyzed with USFPM/GFPM ranging from a baseline 48% increase to a 173% increase in annual U.S. consumption of wood for energy from 2006 to 2030, while consumption of fuelwood in other countries was assumed to increase by around 65% in aggregate. Results indicate that expansion in wood energy consumption across the range of scenarios may have little impact on U.S. forest sector markets because most of the expansion can be supplied by logging residues that are presently not being utilized and also mill residues that will increase in supply with projected expansion in wood product output in the decades ahead. However, analysis also suggests that forest sector markets could be disrupted by expansion in wood energy if much higher levels of wood energy consumption occur, or if projected recovery in housing demand and wood product output does not occur, or if more restrictive constraints or higher costs are imposed on wood residue utilization.Forest products Market modeling Wood energy scenarios
    corecore