57 research outputs found

    Geological and taphonomic context for the new hominin species Homo naledi from the Dinaledi Chamber, South Africa

    Get PDF
    Abstract: We describe the physical context of the Dinaledi Chamber within the Rising Star cave, South Africa, which contains the fossils of Homo naledi. Approximately 1550 specimens of hominin remains have been recovered from at least 15 individuals, representing a small portion of the total fossil content. Macro-vertebrate fossils are exclusively H. naledi, and occur within clay-rich sediments derived from in situ weathering, and exogenous clay and silt, which entered the chamber through fractures that prevented passage of coarser-grained material. The chamber was always in the dark zone, and not accessible to non-hominins. Bone taphonomy indicates that hominin individuals reached the chamber complete, with disarticulation occurring during/after deposition. Hominins accumulated over time as older laminated mudstone units and sediment along the cave floor were eroded. Preliminary evidence is consistent with deliberate body disposal in a single location, by a hominin species other than Homo sapiens, at an as-yet unknown date

    A comprehensive study of noble gases and nitrogen in Hypatia, a diamond-rich pebble from SW Egypt

    Get PDF
    This is a follow-up study of a work by Kramers et al. (2013) on an unusual diamond-rich rock found in the SW side of the Libyan Desert Glass strewn field. This pebble, called Hypatia, is composed of almost pure carbon. Transmission Electron Microscopy and X-ray diffraction results reveal that Hypatia is made of defect-rich diamond containing lonsdaleite and deformation bands. These characteristics are compatible with an impact origin on Earth and/or in space. We analyzed concentrations and isotopic compositions of all five noble gases and nitrogen in several mg sized Hypatia samples. These data confirm that Hypatia is extra-terrestrial. The sample is rich in trapped noble gases with an isotopic composition close to the meteoritic Q component. 40Ar/36Ar ratios in individual steps are as low as 0.4. Concentrations of cosmic-ray produced 21Ne correspond to a nominal cosmic-ray exposure age of ca. 0.1 Myr if produced in a typical m-sized meteoroid. Such an atypically low nominal exposure age suggests high shielding in a considerably larger body. In addition to the Xe-Q composition, an excess of radiogenic 129Xe (from the decay of extinct 129I) is observed (129Xe/132Xe = 1.18 +/- 0.03). Two N components are present, an isotopically heavy component ({\delta}15N = +20 permil) released at low temp. and a major light component ({\delta}15N = -110 permil) at higher temp. This disequilibrium in N suggests that the diamonds in Hypatia were formed in space. Our data are broadly consistent with concentrations and isotopic compositions of noble gases in at least three different types of carbon-rich meteoritic materials. However, Hypatia does not seem to be related to any of these materials, but may have sampled a similar cosmochemical reservoir. Our study does not confirm the presence of exotic noble gases that led Kramers et al. to propose that Hypatia is a remnant of a comet that impacted the Earth

    Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry

    Get PDF
    18961896-1896.Appartient à l’ensemble documentaire : RhoneAlp

    The age of homo naledi and associated sediments in the rising star cave, South Africa

    Get PDF
    New ages for flowstone, sediments and fossil bones from the Dinaledi Chamber are presented. We combined optically stimulated luminescence dating of sediments with U-Th and palaeomagnetic analyses of flowstones to establish that all sediments containing Homo naledi fossils can be allocated to a single stratigraphic entity (sub-unit 3b), interpreted to be deposited between 236 ka and 414 ka. This result has been confirmed independently by dating three H. naledi teeth with combined U-series and electron spin resonance (US-ESR) dating. Two dating scenarios for the fossils were tested by varying the assumed levels of222Rn loss in the encasing sediments: a maximum age scenario provides an average age for the two least altered fossil teeth of 253 +82/-70 ka, whilst a minimum age scenario yields an average age of 200 +70/-61 ka. We consider the maximum age scenario to more closely reflect conditions in the cave, and therefore, the true age of the fossils. By combining the US-ESR maximum age estimate obtained from the teeth, with the U-Th age for the oldest flowstone overlying Homo naledi fossils, we have constrained the depositional age of Homo naledi to a period between 236 ka and 335 ka. These age results demonstrate that a morphologically primitive hominin, Homo naledi, survived into the later parts of the Pleistocene in Africa, and indicate a much younger age for the Homo naledi fossils than have previously been hypothesized based on their morphologyWe would also like to thank the many funding agencies that supported various aspects of this work. In particular we would like to thank the National Geographic Society, the National Research Foundation and the Lyda Hill Foundation for significant funding of the discovery, recovery and initial analysis of this material. Further support was provided by ARC (DP140104282: PHGMD, ER, JK, HHW; FT 120100399: AH). The ESR dosimetry study undertaken by CENIEH and Griffith University has been supported by a Marie Curie International Outgoing Fellowship (under REA Grant Agreement n˚ PIOF-GA-2013–626474) of the European Union’s Seventh Framework Programme (FP7/2007-2013) and an Australian Research Council Future Fellowship (FT150100215). ESR and U-series dating undertaken at SCU were supported by ARC (DP140100919: RJB)

    Hierarchical Earth accretion and the Hadean Eon

    No full text

    Re-appraisal of the stratigraphy and determination of new U-Pb dates for the Sterkfontein hominin site, South Africa

    No full text
    Sterkfontein Caves is the single richest early hominin site in the world with deposits yielding one or more species of Australopithecus and possible early Homo, as well as an extensive faunal collection. The inability to date the southern African cave sites accurately or precisely has hindered attempts to integrate the hominin fossil evidence into pan-African scenarios about human evolutionary history, and especially hominin biogeography. We have used U-Pb and U-Th techniques to date sheets of calcium carbonate flowstone inter-bedded between the fossiliferous sediments. For the first time, absolute age ranges can be assigned to the fossil-bearing deposits: Member 2 is between 2.8 ± 0.28 and 2.6 ± 0.30 Ma and Member 4 between 2.65 ± 0.30 and 2.01 ± 0.05 Ma. The age of 2.01 ± 0.05 Ma for the top of Member 4 constrains the last appearance of Australopithecus africanus to 2 Ma. In the Silberberg Grotto we have reproduced the U-Pb age of ∼2.2 Ma of for the flowstones associated with StW573. We believe that these deposits, including the fossil and the flowstones, accumulated rapidly around 2.2 Ma. The stratigraphy of the site is complex as sediments are exposed both in the underground chambers and at surface. We present a new interpretation of the stratigraphy based on surface mapping, boreholes logs and U-Pb ages. Every effort was made to retain the Member system, however, only Members 2 and 4 are recognized in the boreholes. We propose that the deposits formally known as Member 3 are in fact the distal equivalents of Member 4. The sediments of Members 2 and 4 consisted of cone-like deposits and probably never filled up the cave. The U-Th ages show that there are substantial deposits younger than 400 ka in the underground cave, underlying the older deposits, highlighting again that these cave fills are not simple layer-cakes

    The age of fossil StW573 (‘Little Foot’): An alternative interpretation of 26Al/10Be burial data

    Get PDF
    Following the publication (Granger DE et al., Nature 2015;522:85–88) of an 26Al/10Be burial isochron age of 3.67±0.16 Ma for the sediments encasing hominin fossil StW573 (‘Little Foot’), we consider data on chert samples presented in that publication to explore alternative age interpretations. 10Be and 26Al concentrations determined on individual chert fragments within the sediments were calculated back in time, and data from one of these fragments point to a maximum age of 2.8 Ma for the sediment package and therefore also for the fossil. An alternative hypothesis is explored, which involves re-deposition and mixing of sediment that had previously collected over time in an upper chamber, which has since been eroded. We show that it is possible for such a scenario to yield ultimately an isochron indicating an apparent age much older than the depositional age of the sediments around the fossil. A possible scenario for deposition of StW573 in Member 2 would involve the formation of an opening between the Silberberg Grotto and an upper chamber. Not only could such an opening have acted as a death trap, but it could also have disturbed the sedimentological balance in the cave, allowing unconsolidated sediment to be washed into the Silberberg Grotto. This two-staged burial model would thus allow a younger age for the fossil, consistent with the sedimentology of the deposit. This alternative age is also not in contradiction to available faunal and palaeomagnetic data. Significance:  Data on chert samples taken close to StW573 impose a maximum age for the fossil of 2.8 Ma – younger than the 3.67 Ma originally reported. We propose and explore a two-stage burial scenario to resolve the inconsistency and to reopen the discussion on the age of fossil StW573

    The age of fossil StW573 (‘Little Foot’): Reply to comments by Stratford et al. (2017)

    Get PDF
    We reply to comments by Stratford et al. on our article ‘The age of fossil StW573 (‘Little Foot’): an alternative interpretation of 26Al/10Be burial data’, in which we revisit the burial age reported by Granger et al. for the sediments encasing the fossil and the data on which this was based

    The age of fossil StW573 (‘Little Foot’): An alternative interpretation of 26Al/10Be burial data

    Get PDF
    Following the publication (Granger DE et al., Nature 2015;522:85–88) of an 26Al/10Be burial isochron age of 3.67±0.16 Ma for the sediments encasing hominin fossil StW573 (‘Little Foot’), we consider data on chert samples presented in that publication to explore alternative age interpretations. 10Be and 26Al concentrations determined on individual chert fragments within the sediments were calculated back in time, and data from one of these fragments point to a maximum age of 2.8 Ma for the sediment package and therefore also for the fossil. An alternative hypothesis is explored, which involves re-deposition and mixing of sediment that had previously collected over time in an upper chamber, which has since been eroded. We show that it is possible for such a scenario to yield ultimately an isochron indicating an apparent age much older than the depositional age of the sediments around the fossil. A possible scenario for deposition of StW573 in Member 2 would involve the formation of an opening between the Silberberg Grotto and an upper chamber. Not only could such an opening have acted as a death trap, but it could also have disturbed the sedimentological balance in the cave, allowing unconsolidated sediment to be washed into the Silberberg Grotto. This two-staged burial model would thus allow a younger age for the fossil, consistent with the sedimentology of the deposit. This alternative age is also not in contradiction to available faunal and palaeomagnetic data. Significance:  • Data on chert samples taken close to StW573 impose a maximum age for the fossil of 2.8 Ma – younger than the 3.67 Ma originally reported. We propose and explore a two-stage burial scenario to resolve the inconsistency and to reopen the discussion on the age of fossil StW573
    • …
    corecore