27,396 research outputs found
Power supply Patent
Power supply with automatic power factor conversion syste
Lower Critical Field Hc1(T) and Pairing Symmetry Based on Eilenberger Theory
We quantitatively estimate different T-dependences of Hc1 between s wave and
d wave pairings by Eilenberger theory. The T-dependences of Hc1(T) show
quantitative deviation from those in London theory. We also study differences
of Hc1(T) between p+ and p- wave pairing in chiral p wave superconductors.
There, Hc1(T) is lower in p- wave pairing, and shows the same T-dependence as
in s wave pairing.Comment: 2 pages, 1 figur
Review of research in primary reading at Boston University: 1954-1959.
Thesis (Ed.M.)--Boston Universit
The 2-10 keV emission properties of PSR B1937+21
We present the results of a BeppoSAX observation of the fastest pulsar known:
PSR B1937+21. The ~ 200 ks observation (78.5 (34) ks MECS (LECS) exposure
times) allowed us to investigate with high statistical significance both the
spectral properties and the pulse profile shape. The absorbed power law
spectral model gave a photon index of ~ 1.7 and N_H ~ 2.3 x 10^22 cm^-2. These
values explain both a) the ROSAT non-detection and b) the deviant estimate of a
photon index of ~ 0.8 obtained by ASCA. The pulse profile appears, for the
first time, clearly double peaked with the main component much stronger than
the other. The statistical significance is 10 sigma (main peak) and 5 sigma
(secondary peak). The 1.6-10 keV pulsed fraction is consistent with 100%; only
in the 1.6-4 keV band there is a ~ 2 sigma indication for a DC component. The
secondary peak is detected significantly only for energies above 3 / 4 keV. The
unabsorbed (2-10 keV) flux is F_2-10 = 3.7 x 10^-13 erg cm^-2 s^-1, implying a
luminosity of L_X = 4.6 x 10^31 Theta (d/3.6 kpc)^2 erg s^-1 and an X-ray
efficiency of eta = 4 x 10^-5 Theta, where Theta is the solid angle spanned by
the emission beam. These results are in agreement with those obtained by ASCA.Comment: 4 pages, 4 figures, 2 tables. To appear in the Proceedings of the
270. WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants,
Jan. 21-25, 2002, Physikzentrum Bad Honnef, eds W. Becker, H. Lesch & J.
Truemper. Proceedings are available as MPE-Report 27
Information Content in Decays and the Angular Moments Method
The time-dependent angular distributions of decays of neutral mesons into
two vector mesons contain information about the lifetimes, mass differences,
strong and weak phases, form factors, and CP violating quantities. A
statistical analysis of the information content is performed by giving the
``information'' a quantitative meaning. It is shown that for some parameters of
interest, the information content in time and angular measurements combined may
be orders of magnitude more than the information from time measurements alone
and hence the angular measurements are highly recommended. The method of
angular moments is compared with the (maximum) likelihood method to find that
it works almost as well in the region of interest for the one-angle
distribution. For the complete three-angle distribution, an estimate of
possible statistical errors expected on the observables of interest is
obtained. It indicates that the three-angle distribution, unraveled by the
method of angular moments, would be able to nail down many quantities of
interest and will help in pointing unambiguously to new physics.Comment: LaTeX, 34 pages with 9 figure
Jamming under tension in polymer crazes
Molecular dynamics simulations are used to study a unique expanded jammed
state. Tension transforms many glassy polymers from a dense glass to a network
of fibrils and voids called a craze. Entanglements between polymers and
interchain friction jam the system after a fixed increase in volume. As in
dense jammed systems, the distribution of forces is exponential, but they are
tensile rather than compressive. The broad distribution of forces has important
implications for fibril breakdown and the ultimate strength of crazes.Comment: 4 pages, 4 figure
Axial symmetry and conformal Killing vectors
Axisymmetric spacetimes with a conformal symmetry are studied and it is shown
that, if there is no further conformal symmetry, the axial Killing vector and
the conformal Killing vector must commute. As a direct consequence, in
conformally stationary and axisymmetric spacetimes, no restriction is made by
assuming that the axial symmetry and the conformal timelike symmetry commute.
Furthermore, we prove that in axisymmetric spacetimes with another symmetry
(such as stationary and axisymmetric or cylindrically symmetric spacetimes) and
a conformal symmetry, the commutator of the axial Killing vector with the two
others mush vanish or else the symmetry is larger than that originally
considered. The results are completely general and do not depend on Einstein's
equations or any particular matter content.Comment: 15 pages, Latex, no figure
A unified approach to linking experimental, statistical and computational analysis of spike train data
A fundamental issue in neuroscience is how to identify the multiple biophysical mechanisms through which neurons generate observed patterns of spiking activity. In previous work, we proposed a method for linking observed patterns of spiking activity to specific biophysical mechanisms based on a state space modeling framework and a sequential Monte Carlo, or particle filter, estimation algorithm. We have shown, in simulation, that this approach is able to identify a space of simple biophysical models that were consistent with observed spiking data (and included the model that generated the data), but have yet to demonstrate the application of the method to identify realistic currents from real spike train data. Here, we apply the particle filter to spiking data recorded from rat layer V cortical neurons, and correctly identify the dynamics of an slow, intrinsic current. The underlying intrinsic current is successfully identified in four distinct neurons, even though the cells exhibit two distinct classes of spiking activity: regular spiking and bursting. This approach – linking statistical, computational, and experimental neuroscience – provides an effective technique to constrain detailed biophysical models to specific mechanisms consistent with observed spike train data.Published versio
Long term monitoring of mode switching for PSR B0329+54
The mode switching phenomenon of PSR B0329+54 is investigated based on the
long-term monitoring from September 2003 to April 2009 made with the Urumqi 25m
radio telescope at 1540 MHz. At that frequency, the change of relative
intensity between the leading and trailing components is the predominant
feature of mode switching. The intensity ratios between the leading and
trailing components are measured for the individual profiles averaged over a
few minutes. It is found that the ratios follow normal distributions, where the
abnormal mode has a wider typical width than the normal mode, indicating that
the abnormal mode is less stable than the normal mode. Our data show that 84.9%
of the time for PSR B0329+54 was in the normal mode and 15.1% was in the
abnormal mode. From the two passages of eight-day quasi-continuous observations
in 2004, and supplemented by the daily data observed with 15 m telescope at 610
MHz at Jodrell Bank Observatory, the intrinsic distributions of mode timescales
are constrained with the Bayesian inference method. It is found that the gamma
distribution with the shape parameter slightly smaller than 1 is favored over
the normal, lognormal and Pareto distributions. The optimal scale parameters of
the gamma distribution is 31.5 minutes for the abnormal mode and 154 minutes
for the normal mode. The shape parameters have very similar values, i.e.
0.75^{+0.22}_{-0.17} for the normal mode and 0.84^{+0.28}_{-0.22} for the
abnormal mode, indicating the physical mechanisms in both modes may be the
same. No long-term modulation of the relative intensity ratios was found for
both the modes, suggesting that the mode switching was stable. The intrinsic
timescale distributions, for the first time constrained for this pulsar,
provide valuable information to understand the physics of mode switching.Comment: 31 pages,12 figures, Accepted by the Ap
- …