13,447 research outputs found
Spherical Orbifolds for Cosmic Topology
Harmonic analysis is a tool to infer cosmic topology from the measured
astrophysical cosmic microwave background CMB radiation. For overall positive
curvature, Platonic spherical manifolds are candidates for this analysis. We
combine the specific point symmetry of the Platonic manifolds with their deck
transformations. This analysis in topology leads from manifolds to orbifolds.
We discuss the deck transformations of the orbifolds and give eigenmodes for
the harmonic analysis as linear combinations of Wigner polynomials on the
3-sphere. These provide new tools for detecting cosmic topology from the CMB
radiation.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with
arXiv:1011.427
Long term monitoring of mode switching for PSR B0329+54
The mode switching phenomenon of PSR B0329+54 is investigated based on the
long-term monitoring from September 2003 to April 2009 made with the Urumqi 25m
radio telescope at 1540 MHz. At that frequency, the change of relative
intensity between the leading and trailing components is the predominant
feature of mode switching. The intensity ratios between the leading and
trailing components are measured for the individual profiles averaged over a
few minutes. It is found that the ratios follow normal distributions, where the
abnormal mode has a wider typical width than the normal mode, indicating that
the abnormal mode is less stable than the normal mode. Our data show that 84.9%
of the time for PSR B0329+54 was in the normal mode and 15.1% was in the
abnormal mode. From the two passages of eight-day quasi-continuous observations
in 2004, and supplemented by the daily data observed with 15 m telescope at 610
MHz at Jodrell Bank Observatory, the intrinsic distributions of mode timescales
are constrained with the Bayesian inference method. It is found that the gamma
distribution with the shape parameter slightly smaller than 1 is favored over
the normal, lognormal and Pareto distributions. The optimal scale parameters of
the gamma distribution is 31.5 minutes for the abnormal mode and 154 minutes
for the normal mode. The shape parameters have very similar values, i.e.
0.75^{+0.22}_{-0.17} for the normal mode and 0.84^{+0.28}_{-0.22} for the
abnormal mode, indicating the physical mechanisms in both modes may be the
same. No long-term modulation of the relative intensity ratios was found for
both the modes, suggesting that the mode switching was stable. The intrinsic
timescale distributions, for the first time constrained for this pulsar,
provide valuable information to understand the physics of mode switching.Comment: 31 pages,12 figures, Accepted by the Ap
What AlpArray tells us about stress and water resources under the Alpine Region
The seismological AlpArray has shed much light on Earth`s structure and earthquakes in the Alpine region. Beside these two classical seismological applications (“events” and “structure”), a dataset of this kind can also be used for other purposes, and the geophysics group at the University of Vienna has been interested in extending the range of applications also into non-classical domains over the last years.
The data have helped us understand non-tectonic phenomena that generate seismic waves in the region, both of natural (such as water, wind, rockfalls, etc.), and of human origin (such as explosions, fires, trains, etc.). This has also extended the use of seismic data across the Earth`s surface, using seismic wave coupling with infrasound.
In this presentation, we focus on new applications of seismic data that extend the “structural” portfolio of seismological techniques, based on nonlinear elasticity (temporal velocity changes). “Pump-probe” approaches use a known test signal to infer subsurface properties. One such test signal is given by tidal stress, which we use as “pump” and ambient noise as “probe”, to infer the orientation of mechanical stress acting at crustal depth throughout the Alpine region. This complements the World Stress Map in regions, where we have previously not had stress data - allowing us, for example, to understand why certain major faults in the Eastern Alps (the Periadriatic Line and the Giudicarie Fault) do not rupture seismically, different from less mature, but more favorably-oriented faults.
A particularly promising new application of seismic waves is the study of water in the shallow subsurface, which affects seismic wave velocities. We show that seismic waves can be used to constrain the hydraulic properties of ground water reservoirs from seismic data. Ground water level is often sensitive to air-pressure variations, and we can use the latter as “pump” to explore ground water reservoir characteristics throughout the Alpine region. The large regional variation in observed admissivity throughout Central Europe indicates the effects of thermally-related and air-pressure-related influences.
The study of seismological AlpArray data shows that also changes of soil moisture can be made visible by seismic imaging. Such variations occur periodically, but there are also important long-term trends, which show different characteristics in different regions. Seismic data can fill the observational gap in soil moisture, in a wide range of distances, and importantly, in the depth range that is relevant for plant growth. This shows that seismology can give rather useful constraints for understanding the consequences of climate change
Quantum theory of an atom laser originating from a Bose-Einstein condensate or a Fermi gas in the presence of gravity
We present a 3D quantum mechanical theory of radio-frequency outcoupled atom
lasers from trapped atomic gases in the presence of the gravitational force.
Predictions for the total outcoupling rate as a function of the radio-frequency
and for the beam wave function are given. We establish a sum rule for the
energy integrated outcoupling, which leads to a separate determination of the
coupling strength between the atoms and the radiation field.
For a non-interacting Bose-Einstein condensate analytic solutions are derived
which are subsequently extended to include the effects of atomic interactions.
The interactions enhance interference effects in the beam profile and modify
the outcoupling rate of the atom laser. We provide a complete quantum
mechanical solution which is in line with experimental findings and allows to
determine the validity of commonly used approximative methods.
We also extend the formalism to a fermionic atom laser and analyze the effect
of superfluidity on the outcoupling of atoms.Comment: 13 pages, 8 figures, slightly expanded versio
Information Content in Decays and the Angular Moments Method
The time-dependent angular distributions of decays of neutral mesons into
two vector mesons contain information about the lifetimes, mass differences,
strong and weak phases, form factors, and CP violating quantities. A
statistical analysis of the information content is performed by giving the
``information'' a quantitative meaning. It is shown that for some parameters of
interest, the information content in time and angular measurements combined may
be orders of magnitude more than the information from time measurements alone
and hence the angular measurements are highly recommended. The method of
angular moments is compared with the (maximum) likelihood method to find that
it works almost as well in the region of interest for the one-angle
distribution. For the complete three-angle distribution, an estimate of
possible statistical errors expected on the observables of interest is
obtained. It indicates that the three-angle distribution, unraveled by the
method of angular moments, would be able to nail down many quantities of
interest and will help in pointing unambiguously to new physics.Comment: LaTeX, 34 pages with 9 figure
Actions for Vacuum Einstein's Equation with a Killing Symmetry
In a space-time with a Killing vector field which is either
everywhere timelike or everywhere spacelike, the collection of all trajectories
of gives a 3-dimension space . Besides the symmetry-reduced action
from that of Einstein-Hilbert, an alternative action of the fields on is
also proposed, which gives the same fields equations as those reduced from the
vacuum Einstein equation on .Comment: 8 pages, the difference between the action we proposed and the
symmetry-reduced action is clarifie
Derivation of Apollo 14 High-Al Basalts from Distinct Source Regions at Discrete Times: New Constraints
Apollo 14 basalts occur predominantly as clasts in breccias, but represent the oldest volcanic products that were returned from the Moon [1]. These basalts are relatively enriched in Al2O3 (11-16 wt%) compared to other mare basalts (7-11 wt%) and were originally classified into 5 compositional groups [2,3]. Neal et al. [4] proposed that a continuum of compositions existed. These were related through assimilation (of KREEP) and fractional crystallization (AFC). Age data, however, show that at least three volcanic episodes are recorded in the sample collection [1,5,6]. Recent work has demonstrated that there are three, possibly four groups of basalts in the Apollo 14 sample collection that were erupted from different source regions at different times [7]. This conclusion was based upon incompatible trace element (ITE) ratios of elements that should not be fractionated from one another during partial melting (Fig. 1). These groups are defined as Group A (Groups 4 & 5 of [3]), Group B (Groups 1 & 2 of [3]), and Group C (Group 3 of [3]). Basalt 14072 is distinct from Groups A-C
Preclinical Applications of 3'-Deoxy-3'-[18F]Fluorothymidine in Oncology - A Systematic Review
The positron emission tomography (PET) tracer 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) has been proposed to measure cell proliferation non-invasively in vivo. Hence, it should provide valuable information for response assessment to tumor therapies. To date, [18F]FLT uptake has found limited use as a response biomarker in clinical trials in part because a better understanding is needed of the determinants of [18F]FLT uptake and therapy-induced changes of its retention in the tumor. In this systematic review of preclinical [18F]FLT studies, comprising 174 reports, we identify the factors governing [18F]FLT uptake in tumors, among which thymidine kinase 1 plays a primary role. The majority of publications (83 %) report that decreased [18F]FLT uptake reflects the effects of anticancer therapies. 144 times [18F]FLT uptake was related to changes in proliferation as determined by ex vivo analyses. Of these approaches, 77 % describe a positive relation, implying a good concordance of tracer accumulation and tumor biology. These preclinical data indicate that [18F]FLT uptake holds promise as an imaging biomarker for response assessment in clinical studies. Understanding of the parameters which influence cellular [18F]FLT uptake and retention as well as the mechanism of changes induced by therapy is essential for successful implementation of this PET tracer. Hence, our systematic review provides the background for the use of [18F]FLT in future clinical studies
Two body decays of the -quark: Applications to direct CP violation, searches for electro-weak penguins and new physics
A systematic experimental search for two-body hadronic decays of the b-quark
of the type b to quark + meson is proposed. These reactions have a well defined
experimental signature and they should be theoretically cleaner compared to
exclusive decays. Many modes have appreciable branching ratios and partial rate
asymmetries may also be quite large (about 8-50%) in several of them. In a few
cases electroweak penguins appear to be dominant and may be measurable. CP
violating triple correlation asymmetries provide a clean test of the Standard
Model.Comment: 12 pages 1 figure 1 tabl
- …