22,983 research outputs found

    Research on output feedback control

    Get PDF
    In designing fixed order compensators, an output feedback formulation has been adopted by suitably augmenting the system description to include the compensator states. However, the minimization of the performance index over the range of possible compensator descriptions was impeded due to the nonuniqueness of the compensator transfer function. A controller canonical form of the compensator was chosen to reduce the number of free parameters to its minimal number in the optimization. In the MIMO case, the controller form requires a prespecified set of ascending controllability indices. This constraint on the compensator structure is rather innocuous in relation to the increase in convergence rate of the optimization. Moreover, the controller form is easily relatable to a unique controller transfer function description. This structure of the compensator does not require penalizing the compensator states for a nonzero or coupled solution, a problem that occurs when following a standard output feedback synthesis formulation

    Negative differential conductance induced by spin-charge separation

    Full text link
    Spin-charge states of correlated electrons in a one-dimensional quantum dot attached to interacting leads are studied in the non-linear transport regime. With non-symmetric tunnel barriers, regions of negative differential conductance induced by spin-charge separation are found. They are due to a correlation-induced trapping of higher-spin states without magnetic field, and associated with a strong increase in the fluctuations of the electron spin.Comment: REVTEX, 4 pages including 3 figures; Accepted for publication on Physical Review Letter

    Mode Switching and Subpulse Drifting in PSR B0826-34

    Full text link
    We present high-quality observations of PSR B0826-34 at 1374 MHz. The emission from this pulsar exhibits strong bursts of pulses followed by long periods of `null' pulses. When it is strong, the radiation extends through the whole pulse period. We show for the first time that there is weak emission during the `null' phases, which should therefore be considered to be a different mode rather than a null. During this weak mode the profile is similar to that observed in the strong mode at low radio frequency. Using a phase-tracking method, the pattern of drifting subpulses during the strong mode is seen to be coherent across the whole profile. The drift rate is variable and includes positive and negative values. Thirteen subpulse bands have been directly observed, covering the whole longitude range. The subpulses and their spacings (P2P_2) are wider in one half of the profile than those in the other half. This difference, and the variation of observed P2P_2 within the two regions, can be accounted for if the magnetic pole is inclined to the rotation axis by about 0.5 degrees. These two regions appear to represent radiation from outer and inner cones. The intensity modulation of subpulses in all longitude ranges is related to the magnitude of the drift rate.Comment: 8 pages, 10 figures. Accepted for publication in MNRA

    Evidence for Factorization Breaking in Diffractive Low-Q^2 Dijet Production

    Full text link
    We calculate diffractive dijet production in deep-inelastic scattering at next-to-leading order of perturbative QCD, including contributions from direct and resolved photons, and compare our predictions to preliminary data from the H1 collaboration at HERA. In contrast to recent experimental claims, evidence for factorization breaking is found only for resolved, and not direct, photon contributions. No evidence is found for large normalization uncertainties in diffractive parton densities. The results confirm theoretical expectations for the (non-)cancellation of soft singularities in diffractive scattering as well as previous results for (almost) real photoproduction.Comment: 4 pages, 3 figure

    Apollo-11 lunar sample information catalogue

    Get PDF
    The Apollo 11 mission is reviewed with emphasis on the collection of lunar samples, their geologic setting, early processing, and preliminary examination. The experience gained during five subsequent missions was applied to obtain physical-chemical data for each sample using photographic and binocular microscope techniques. Topics discussed include: binocular examination procedure; breccia clast dexrriptuons, thin section examinations procedure typical breccia in thin section, typical basalt in thin section, sample histories, and chemical and age data. An index to photographs is included

    One-loop amplitudes for four-point functions with two external massive quarks and two external massless partons up to O(epsilon^2)

    Full text link
    We present complete analytical O(ϵ2){\mathcal O}(\epsilon^2) results on the one-loop amplitudes relevant for the NNLO quark-parton model description of the hadroproduction of heavy quarks as given by the so-called loop-by-loop contributions. All results of the perturbative calculation are given in the dimensional regularization scheme. These one-loop amplitudes can also be used as input in the determination of the corresponding NNLO cross sections for heavy flavor photoproduction, and in photon-photon reactions.Comment: 25 pages, 6 figures in the text, Revtex, one reference added, minor improvements in the text, to appear in Phys.Rev.

    Gravitational Collapse of Massless Scalar Field with Negative Cosmological Constant in (2+1) Dimensions

    Full text link
    The 2+1-dimensional geodesic circularly symmetric solutions of Einstein-massless-scalar field equations with negative cosmological constant are found and their local and global properties are studied. It is found that one of them represents gravitational collapse where black holes are always formed.Comment: no figure

    Discovery of 28 pulsars using new techniques for sorting pulsar candidates

    Full text link
    Modern pulsar surveys produce many millions of candidate pulsars, far more than can be individually inspected. Traditional methods for filtering these candidates, based upon the signal-to-noise ratio of the detection, cannot easily distinguish between interference signals and pulsars. We have developed a new method of scoring candidates using a series of heuristics which test for pulsar-like properties of the signal. This significantly increases the sensitivity to weak pulsars and pulsars with periods close to interference signals. By applying this and other techniques for ranking candidates from a previous processing of the Parkes Multi-beam Pulsar Survey, 28 previously unknown pulsars have been discovered. These include an eccentric binary system and a young pulsar which is spatially coincident with a known supernova remnant.Comment: To be published in Monthly Notices of the Royal Astronomical Society. 11 pages, 9 figure

    Temperatures of dust and gas in S~140

    Get PDF
    In dense parts of interstellar clouds (> 10^5 cm^-3), dust & gas are expected to be in thermal equilibrium, being coupled via collisions. However, previous studies have shown that the temperatures of the dust & gas may remain decoupled even at higher densities. We study in detail the temperatures of dust & gas in the photon-dominated region S 140, especially around the deeply embedded infrared sources IRS 1-3 and at the ionization front. We derive the dust temperature and column density by combining Herschel PACS continuum observations with SOFIA observations at 37 ÎĽ\mum and SCUBA at 450 ÎĽ\mum. We model these observations using greybody fits and the DUSTY radiative transfer code. For the gas part we use RADEX to model the CO 1-0, CO 2-1, 13CO 1-0 and C18O 1-0 emission lines mapped with the IRAM-30m over a 4' field. Around IRS 1-3, we use HIFI observations of single-points and cuts in CO 9-8, 13CO 10-9 and C18O 9-8 to constrain the amount of warm gas, using the best fitting dust model derived with DUSTY as input to the non-local radiative transfer model RATRAN. We find that the gas temperature around the infrared sources varies between 35 and 55K and that the gas is systematically warmer than the dust by ~5-15K despite the high gas density. In addition we observe an increase of the gas temperature from 30-35K in the surrounding up to 40-45K towards the ionization front, most likely due to the UV radiation from the external star. Furthermore, detailed models of the temperature structure close to IRS 1 show that the gas is warmer and/or denser than what we model. Finally, modelling of the dust emission from the sub-mm peak SMM 1 constrains its luminosity to a few ~10^2 Lo. We conclude that the gas heating in the S 140 region is very efficient even at high densities, most likely due to the deep UV penetration from the embedded sources in a clumpy medium and/or oblique shocks.Comment: 15 pages, 23 figures, 4 tables, accepted for publication in A&

    Perturbed Self-Similar Massless Scalar Field in the Spacetimes with Circular Symmetry in 2+1 Gravity

    Full text link
    We present in this work the study of the linear perturbations of the 2+1-dimensional circularly symmetric solution, obtained in a previous work, with kinematic self-similarity of the second kind. We have obtained an exact solution for the perturbation equations and the possible perturbation modes. We have shown that the background solution is a stable solution.Comment: no figure
    • …
    corecore