17,154 research outputs found
The 2-10 keV emission properties of PSR B1937+21
We present the results of a BeppoSAX observation of the fastest pulsar known:
PSR B1937+21. The ~ 200 ks observation (78.5 (34) ks MECS (LECS) exposure
times) allowed us to investigate with high statistical significance both the
spectral properties and the pulse profile shape. The absorbed power law
spectral model gave a photon index of ~ 1.7 and N_H ~ 2.3 x 10^22 cm^-2. These
values explain both a) the ROSAT non-detection and b) the deviant estimate of a
photon index of ~ 0.8 obtained by ASCA. The pulse profile appears, for the
first time, clearly double peaked with the main component much stronger than
the other. The statistical significance is 10 sigma (main peak) and 5 sigma
(secondary peak). The 1.6-10 keV pulsed fraction is consistent with 100%; only
in the 1.6-4 keV band there is a ~ 2 sigma indication for a DC component. The
secondary peak is detected significantly only for energies above 3 / 4 keV. The
unabsorbed (2-10 keV) flux is F_2-10 = 3.7 x 10^-13 erg cm^-2 s^-1, implying a
luminosity of L_X = 4.6 x 10^31 Theta (d/3.6 kpc)^2 erg s^-1 and an X-ray
efficiency of eta = 4 x 10^-5 Theta, where Theta is the solid angle spanned by
the emission beam. These results are in agreement with those obtained by ASCA.Comment: 4 pages, 4 figures, 2 tables. To appear in the Proceedings of the
270. WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants,
Jan. 21-25, 2002, Physikzentrum Bad Honnef, eds W. Becker, H. Lesch & J.
Truemper. Proceedings are available as MPE-Report 27
Photon rockets and gravitational radiation
The absence of gravitational radiation in Kinnersley's ``photon rocket''
solution of Einstein's equations is clarified by studying the mathematically
well-defined problem of point-like photon rockets in Minkowski space (i.e.
massive particles emitting null fluid anisotro\-pically and accelerating
because of the recoil). We explicitly compute the (uniquely defined) {\it
linearized} retarded gravitational waves emitted by such objects, which are the
coherent superposition of the gravitational waves generated by the motion of
the massive point-like rocket and of those generated by the energy-momentum
distribution of the photon fluid. In the special case (corresponding to
Kinnersley's solution) where the anisotropy of the photon emission is purely
dipolar we find that the gravitational wave amplitude generated by the
energy-momentum of the photons exactly cancels the usual gravitational
wave amplitude generated by the accelerated motion of the rocket. More general
photon anisotropies would, however, generate genuine gravitational radiation at
infinity. Our explicit calculations show the compatibility between the
non-radiative character of Kinnersley's solution and the currently used
gravitational wave generation formalisms based on post-Minkowskian perturbation
theory.Comment: 21 pages, LATEX, submitted to Class. Quant. Gra
Current-voltage characteristics of quasi-one-dimensional superconductors: An S-curve in the constant voltage regime
Applying a constant voltage to superconducting nanowires we find that its
IV-characteristic exhibits an unusual S-behavior. This behavior is the direct
consequence of the dynamics of the superconducting condensate and of the
existence of two different critical currents: j_{c2} at which the pure
superconducting state becomes unstable and j_{c1}<j_{c2} at which the phase
slip state is realized in the system.Comment: 4 pages, 5 figures, replaced with minor change
Motion of a Vector Particle in a Curved Spacetime. II First Order Correction to a Geodesic in a Schwarzschild Background
The influence of spin on a photon's motion in a Schwarzschild and FRW
spacetimes is studied. The first order correction to the geodesic motion is
found. It is shown that unlike the world-lines of spinless particles, the
photons world-lines do not lie in a plane.Comment: 14 pages, LaTeX2e, second paper in the series (the first one:
gr-qc/0110067), replaced with typos and style corrected version, accepted in
MPL
Localization of non-interacting electrons in thin layered disordered systems
Localization of electronic states in disordered thin layered systems with b
layers is studied within the Anderson model of localization using the
transfer-matrix method and finite-size scaling of the inverse of the smallest
Lyapunov exponent. The results support the one-parameter scaling hypothesis for
disorder strengths W studied and b=1,...,6. The obtained results for the
localization length are in good agreement with both the analytical results of
the self-consistent theory of localization and the numerical scaling studies of
the two-dimensional Anderson model. The localization length near the band
center grows exponentially with b for fixed W but no
localization-delocalization transition takes place.Comment: 6 pages, 5 figure
Stress condensation in crushed elastic manifolds
We discuss an M-dimensional phantom elastic manifold of linear size L crushed
into a small sphere of radius R << L in N-dimensional space. We investigate the
low elastic energy states of 2-sheets (M=2) and 3-sheets (M=3) using analytic
methods and lattice simulations. When N \geq 2M the curvature energy is
uniformly distributed in the sheet and the strain energy is negligible. But
when N=M+1 and M>1, both energies appear to be condensed into a network of
narrow M-1 dimensional ridges. The ridges appear straight over distances
comparable to the confining radius R.Comment: 4 pages, RevTeX + epsf, 4 figures, Submitted to Phys. Rev. Let
Electron propagation in crossed magnetic and electric fields
Laser-atom interaction can be an efficient mechanism for the production of
coherent electrons. We analyze the dynamics of monoenergetic electrons in the
presence of uniform, perpendicular magnetic and electric fields. The Green
function technique is used to derive analytic results for the field--induced
quantum mechanical drift motion of i) single electrons and ii) a dilute Fermi
gas of electrons. The method yields the drift current and, at the same time it
allows us to quantitatively establish the broadening of the (magnetic) Landau
levels due to the electric field: Level number k is split into k+1 sublevels
that render the th oscillator eigenstate in energy space. Adjacent Landau
levels will overlap if the electric field exceeds a critical strength. Our
observations are relevant for quantum Hall configurations whenever electric
field effects should be taken into account.Comment: 11 pages, 2 figures, submitte
Spin frequency evolution and pulse profile variations of the recently re-activated radio magnetar XTE J1810-197
After spending almost a decade in a radio-quiet state, the Anomalous X-ray
Pulsar XTE J1810-197 turned back on in early December 2018. We have observed
this radio magnetar at 1.5 GHz with ~daily cadence since the first detection of
radio re-activation on 8 December 2018. In this paper, we report on the current
timing properties of XTE J1810-197 and find that the magnitude of the spin
frequency derivative has increased by a factor of 2.6 over our 48-day data set.
We compare our results with the spin-down evolution reported during its
previous active phase in the radio band. We also present total intensity pulse
profiles at five different observing frequencies between 1.5 and 8.4 GHz,
collected with the Lovell and the Effelsberg telescopes. The profile evolution
in our data set is less erratic than what was reported during the previous
active phase, and can be seen varying smoothly between observations. Profiles
observed immediately after the outburst show the presence of at least five
cycles of a very stable ~50-ms periodicity in the main pulse component that
lasts for at least tens of days. This remarkable structure is seen across the
full range of observing frequencies.Comment: 9 pages, 7 figures, updated with additional analysis of the 50-ms
oscillation, accepted for publication in MNRA
Variation of the density of states in amorphous GdSi at the metal-insulator transition
We performed detailed conductivity and tunneling mesurements on the
amorphous, magnetically doped material -GdSi (GdSi), which
can be driven through the metal-insulator transition by the application of an
external magnetic field. Conductivity increases linearly with field near the
transition and slightly slower on the metallic side. The tunneling conductance,
proportional to the density of states , undergoes a gradual change with
increasing field, from insulating, showing a soft gap at low bias, with a
slightly weaker than parabolic energy dependence, i.e. , , towards metallic behavior, with , energy
dependence. The density of states at the Fermi level appears to be zero at low
fields, as in an insulator, while the sample shows already small, but
metal-like conductivity. We suggest a possible explanation to the observed
effect.Comment: 6 pages, 6 figure
The Probability Distribution Function of Column Density in Molecular Clouds
(Abridged) We discuss the probability distribution function (PDF) of column
density resulting from density fields with lognormal PDFs, applicable to
isothermal gas (e.g., probably molecular clouds). We suggest that a
``decorrelation length'' can be defined as the distance over which the density
auto-correlation function has decayed to, for example, 10% of its zero-lag
value, so that the density ``events'' along a line of sight can be assumed to
be independent over distances larger than this, and the Central Limit Theorem
should be applicable. However, using random realizations of lognormal fields,
we show that the convergence to a Gaussian is extremely slow in the high-
density tail. Thus, the column density PDF is not expected to exhibit a unique
functional shape, but to transit instead from a lognormal to a Gaussian form as
the ratio of the column length to the decorrelation length increases.
Simultaneously, the PDF's variance decreases. For intermediate values of
, the column density PDF assumes a nearly exponential decay. We then
discuss the density power spectrum and the expected value of in actual
molecular clouds. Observationally, our results suggest that may be
inferred from the shape and width of the column density PDF in
optically-thin-line or extinction studies. Our results should also hold for gas
with finite-extent power-law underlying density PDFs, which should be
characteristic of the diffuse, non-isothermal neutral medium (temperatures
ranging from a few hundred to a few thousand degrees). Finally, we note that
for , the dynamic range in column density is small
( a factor of 10), but this is only an averaging effect, with no
implication on the dynamic range of the underlying density distribution.Comment: 13 pages, 7 figures (10 postscript files). Accepted in ApJ.
Eliminated implication that ratio of column length to correlation length
necessarily increases with resolution, and thus that 3D simulations are
unresolved. Added discussion of dependence of autocorrelation function with
parameters of the turbulenc
- âŠ