726 research outputs found

    Analysis and Exploration of Novel Antibiotic-Producing Streptomyces spp. in Spokane County, Washington

    Get PDF
    According to the Centers for Disease Control and Prevention, a US citizen is infected by an antibiotic-resistant pathogen every 11 seconds, and every 15 minutes, a patient dies as a result of these infections. Due to the increasing incidence of antibiotic-resistant pathogenic microbes, the study and exploration of novel antibiotics from novel environments are imperative as infectious diseases are the second leading cause of death in the United States. The purpose of this research is to investigate and analyze antibiotic-producing soil microbes in Spokane County, WA, with hopes of discovering novel antibiotic-producing microbes, specifically Streptomyces species, and explore some of the variables that influence the production of secondary metabolites. My hypotheses are as follows: Soil microbes existing in Spokane County will include Streptomyces spp. capable of producing secondary metabolites suitable to combat selected Gram-negative or Gram-positive bacterial ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and pathogenic fungi such as Candida albicans. Additionally, modifying laboratory variables such as incubation temperature, time in incubation, and the type of media will influence the production of metabolites produced by Streptomyces isolates. Modifying these variables will impact the inhibitory capabilities of these isolates against Gram-negative, Gram-positive, and pathogenic fungal microbes. Cell-free supernatants of secondary metabolites on disk diffusion and 96 well plate assays will be utilized to measure zones of inhibition and inhibitory capabilities with absorbance measured at 600nm using a spectrophotometer

    Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses

    Get PDF
    This is the publisher's version, also available electronically from http://journal.frontiersin.org/Journal/10.3389/fncom.2014.00031/abstractThe brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty—both in the functional network edges and the corresponding aggregate measures of network topology—are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here—appropriate for static and dynamic network inference and different statistical measures of coupling—permits the evaluation of confidence in network measures in a variety of settings common to neuroscience

    Measurement of the Neutron Spin Structure Function g1ng_1^n with a Polarized ^3He Target

    Get PDF
    Results are reported from the HERMES experiment at HERA on a measurement of the neutron spin structure function g1n(x,Q2)g_1^n(x,Q^2) in deep inelastic scattering using 27.5 GeV longitudinally polarized positrons incident on a polarized 3^3He internal gas target. The data cover the kinematic range 0.023<x<0.60.023<x<0.6 and 1(GeV/c)2<Q2<15(GeV/c)21 (GeV/c)^2 < Q^2 <15 (GeV/c)^2. The integral 0.0230.6g1n(x)dx\int_{0.023}^{0.6} g_1^n(x) dx evaluated at a fixed Q2Q^2 of 2.5(GeV/c)22.5 (GeV/c)^2 is 0.034±0.013(stat.)±0.005(syst.)-0.034\pm 0.013(stat.)\pm 0.005(syst.). Assuming Regge behavior at low xx, the first moment Γ1n=01g1n(x)dx\Gamma_1^n=\int_0^1 g_1^n(x) dx is 0.037±0.013(stat.)±0.005(syst.)±0.006(extrapol.)-0.037\pm 0.013(stat.)\pm 0.005(syst.)\pm 0.006(extrapol.).Comment: 4 pages TEX, text available at http://www.krl.caltech.edu/preprints/OAP.htm

    Beam-Induced Nuclear Depolarisation in a Gaseous Polarised Hydrogen Target

    Get PDF
    Spin-polarised atomic hydrogen is used as a gaseous polarised proton target in high energy and nuclear physics experiments operating with internal beams in storage rings. When such beams are intense and bunched, this type of target can be depolarised by a resonant interaction with the transient magnetic field generated by the beam bunches. This effect has been studied with the HERA positron beam in the HERMES experiment at DESY. Resonances have been observed and a simple analytic model has been used to explain their shape and position. Operating conditions for the experiment have been found where there is no significant target depolarisation due to this effect.Comment: REVTEX, 6 pages, 5 figure

    Measurement of the Proton Spin Structure Function g1p with a Pure Hydrogen Target

    Full text link
    A measurement of the proton spin structure function g1p(x,Q^2) in deep-inelastic scattering is presented. The data were taken with the 27.6 GeV longitudinally polarised positron beam at HERA incident on a longitudinally polarised pure hydrogen gas target internal to the storage ring. The kinematic range is 0.021<x<0.85 and 0.8 GeV^2<Q^2<20 GeV^2. The integral Int_{0.021}^{0.85} g1p(x)dx evaluated at Q0^2 of 2.5 GeV^2 is 0.122+/-0.003(stat.)+/-0.010(syst.).Comment: 7 pages, 3 figures, 1 table, RevTeX late

    Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron

    Full text link
    The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte

    Measurement of Angular Distributions and R= sigma_L/sigma_T in Diffractive Electroproduction of rho^0 Mesons

    Full text link
    Production and decay angular distributions were extracted from measurements of exclusive electroproduction of the rho^0(770) meson over a range in the virtual photon negative four-momentum squared 0.5< Q^2 <4 GeV^2 and the photon-nucleon invariant mass range 3.8< W <6.5 GeV. The experiment was performed with the HERMES spectrometer, using a longitudinally polarized positron beam and a ^3He gas target internal to the HERA e^{+-} storage ring. The event sample combines rho^0 mesons produced incoherently off individual nucleons and coherently off the nucleus as a whole. The distributions in one production angle and two angles describing the rho^0 -> pi+ pi- decay yielded measurements of eight elements of the spin-density matrix, including one that had not been measured before. The results are consistent with the dominance of helicity-conserving amplitudes and natural parity exchange. The improved precision achieved at 47 GeV, reveals evidence for an energy dependence in the ratio R of the longitudinal to transverse cross sections at constant Q^2.Comment: 15 pages, 15 embedded figures, LaTeX for SVJour(epj) document class Revision: Fig. 15 corrected, recent data added to Figs. 10,12,14,15; minor changes to tex

    Measurement of the Spin Asymmetry in the Photoproduction of Pairs of High-pT Hadrons at HERMES

    Get PDF
    We present a measurement of the longitudinal spin asymmetry A_|| in photoproduction of pairs of hadrons with high transverse momentum p_T. Data were accumulated by the HERMES experiment using a 27.5 GeV polarized positron beam and a polarized hydrogen target internal to the HERA storage ring. For h+h- pairs with p_T^h_1 > 1.5 GeV/c and p_T^h_2 > 1.0 GeV/c, the measured asymmetry is A_|| = -0.28 +/- 0.12 (stat.) +/- 0.02 (syst.). This negative value is in contrast to the positive asymmetries typically measured in deep inelastic scattering from protons, and is interpreted to arise from a positive gluon polarization.Comment: 5 pages (latex), 4 figures (eps
    corecore