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The brain is a complex network of interconnected elements, whose interactions evolve
dynamically in time to cooperatively perform specific functions. A common technique
to probe these interactions involves multi-sensor recordings of brain activity during a
repeated task. Many techniques exist to characterize the resulting task-related activity,
including establishing functional networks, which represent the statistical associations
between brain areas. Although functional network inference is commonly employed
to analyze neural time series data, techniques to assess the uncertainty—both in
the functional network edges and the corresponding aggregate measures of network
topology—are lacking. To address this, we describe a statistically principled approach
for computing uncertainty in functional networks and aggregate network measures in
task-related data. The approach is based on a resampling procedure that utilizes the trial
structure common in experimental recordings. We show in simulations that this approach
successfully identifies functional networks and associated measures of confidence
emergent during a task in a variety of scenarios, including dynamically evolving networks.
In addition, we describe a principled technique for establishing functional networks based
on predetermined regions of interest using canonical correlation. Doing so provides
additional robustness to the functional network inference. Finally, we illustrate the use
of these methods on example invasive brain voltage recordings collected during an overt
speech task. The general strategy described here—appropriate for static and dynamic
network inference and different statistical measures of coupling—permits the evaluation
of confidence in network measures in a variety of settings common to neuroscience.

Keywords: functional connectivity, canonical correlation, coherence, ECoG, EEG, MEG

INTRODUCTION
The recent neuroscience literature has seen a dramatic increase
in the number of studies that investigate functional connectiv-
ity in brain networks. Roughly speaking, functional connectivity
refers to coupling (i.e., systematic associations or relationships)
between neural activities in different brain regions of interest
(ROIs) or recording sites (Friston, 1994; Bullmore and Sporns,
2009). Functional connectivity can be estimated from a wide
range of data types with varying degrees of temporal and spatial
resolution, including data with high spatial resolution but poor
temporal resolution collected with positron emission tomogra-
phy (PET) and functional magnetic resonance imaging (fMRI),
as well as data with high temporal resolution collected using elec-
troencephalography (EEG), electrocorticography (ECoG), and
magnetoencephalography (MEG). Here, we focus on functional
connectivity estimated from brain voltage recordings, i.e., EEG
and ECoG (for a review of similar considerations in the con-
text of network inference for fMRI, see Hutchison et al., 2013).
One of the foremost issues associated with functional connectivity

analysis is the choice of coupling measure. Coupling measures
include linear and nonlinear measures of statistical association,
as well as information theoretic and model based measures, and
can be chosen to highlight specific types of associations such as
rhythmic or causal coupling (as reviewed in Pereda et al., 2005;
Greenblatt et al., 2012).

In addition to the choice of coupling measure, a number of
important statistical issues arise in the inference and analysis of
functional brain networks. Here we highlight three such issues.
First, researchers are often interested in detecting and charac-
terizing dynamic transitions in functional connectivity structure.
Such transitions may arise suddenly as a function of a specific
stimulus or behavior, or may reflect gradual ongoing changes in
connectivity through time. For example, in speech production—
an example we will refer to throughout this paper in order to
focus our thoughts—it has been shown that functional connec-
tivity as measured with fMRI changes during voicing (Simonyan
et al., 2009), and abnormal functional connectivity has been asso-
ciated with disordered speech (e.g., Chang et al., 2011). During
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epileptic seizure, brain functional networks assessed from ECoG
data exhibit characteristic dynamical patterns that include the
aggregation and fragmentation of network structure (Schindler
et al., 2007; Burns et al., 2012; Kramer and Cash, 2012).

A second statistical issue in the analysis of functional con-
nectivity in the brain concerns multiple spatial scales. At the
microscopic scale, associations occur between the activities of
individual neurons (e.g., Cohen and Kohn, 2011), and between
the aggregate activity of small neural populations (e.g., Schnitzler
and Gross, 2005). At the macroscopic scale, associations emerge
between entire brain areas, or previously identified ROIs (e.g.,
Golfinopoulos et al., 2011). Often, the spatial scale at which brain
networks are analyzed is determined by the implicit scale of the
method used to record neural activity. However, there has been
increasing interest in understanding relations between functional
connectivity structure at multiple spatial scales. This relationship
can be studied using either multiple simultaneous measures of
neural activity or statistical methods that are capable of inferring
associations across scales.

The final statistical issue we chose to highlight relates to
estimating uncertainty in network level statistics. Typically, a
selected coupling measure is estimated pairwise between all pos-
sible nodes, and the results are thresholded to produce a binary
network (e.g., Stam, 2004; Micheloyannis et al., 2006; Ponten
et al., 2007; Srinivas et al., 2007; Stam et al., 2007; Kramer et al.,
2008; Supekar et al., 2008). Various network measures are then
computed to summarize features of the resulting network topol-
ogy (Kolaczyk, 2009; Rubinov and Sporns, 2010). However, the
uncertainty pertaining to these network level statistics is typically
not computed. This uncertainty will be related to the uncertainty
associated with each of the pairwise connections, but propagating
this edge uncertainty to network level uncertainty is nontrivial
and remains an active area of research.

In this paper, we present a framework for inferring func-
tional connectivity that addresses each of these issues. After
introducing a statistical methodology appropriate for analyzing
connectivity in a given time window with respect to a base-
line condition (Methods sections Construction of Functional
Networks and Assessing Uncertainty), we demonstrate the use
of this network methodology in the context of assessing dynam-
ics, spatial scale, and uncertainty in networks. First, tempo-
rally dynamic changes in network structure are tracked (Results
section Dynamics). Second, using a priori spatial information,
functional connectivity is generalized from between-node con-
nectivity to between-region connectivity. This procedure reduces
the number of inferred connections relative to the number of
measurements, and trades spatial resolution for a more reli-
able estimate of functional connectivity. We apply both of these
approaches to ECoG data collected during an overt speech task
for one subject (Results section ECoG Data), demonstrating their
feasibility and highlighting some desirable features. Finally, we
present several examples to illustrate advantages of the canonical
correlation metric (Results section Advantages of the Canonical
Correlation Measure). Throughout these discussions we quantify
the uncertainty inherent in estimates of functional connectiv-
ity (Methods sections Dynamics, ECoG Data, and Advantages of
the Canonical Correlation Measure). Together these approaches

advance the burgeoning field of functional connectivity in impor-
tant ways and provide a general tool for the construction of mean-
ingful functional networks in task-related data with associated
measures of confidence. The paper concludes with a discussion
of limitations and of future research directions.

METHODS
Network analyses take a wide variety of forms; even for functional
networks constructed using cross correlation (i.e., correlation-
based networks) applied to brain voltage data, there are a number
of design decisions that affect the interpretation of the resulting
networks. Here we focus on how correlation-based networks dif-
fer during a task compared to a baseline period, and we note
that the same framework developed here also applies to other
choices of coupling measure, including coherence-based net-
works (see Discussion). We propose a multi-step analysis strategy
that builds on previous work on edge-count uncertainty in binary
networks (Kramer et al., 2009), utilizing the trial structure of the
data to increase power, highlight differences between task and
baseline, and assess uncertainty. In brief, the proposed method
determines network edges (between individual sensors or groups
of sensors collected across ROIs) using a statistical hypothesis
test, corrects for multiple comparisons, and computes confidence
measures at the single edge and aggregate network measure levels.
As described in detail below, nonparametric bootstrap estima-
tion (Efron and Tibshirani, 1993) is used both for the statistical
hypothesis test to detect individual edges, and for the determi-
nation of confidence intervals over edges and aggregate network
measures. Because bootstrapping is nonparametric, it requires
minimal assumptions about the data.

MOTIVATION: SPEECH TASK
Here we will consider networks constructed during speech pro-
duction as compared to periods of silence. While this example
will be used throughout the paper, any repeated task with a
baseline period could be substituted. The production of speech
involves a large network of brain regions that spans several lobes
of the cerebral cortex along with numerous subcortical struc-
tures (e.g., Guenther et al., 2006). Fluent speech requires very
rapid movements of the tongue and other articulators. For exam-
ple, a typical speaker can easily produce 10 phonemes in 1 s; this
involves the precise sequencing of individual articulatory gestures
that each last approximately 100 ms. The most commonly used
neuroimaging techniques for studying speech, PET and fMRI,
have a temporal resolution on the order of 1 s, precluding them
from measuring these rapid dynamical processes. Furthermore,
speech articulation creates massive muscle-related artifacts in
EEG and MEG, limiting the utility of these technologies for study-
ing speech production. To overcome these problems, a number of
neuroscientists have begun studying speech using ECoG record-
ings collected prior to epilepsy surgery (e.g., Korzeniewska et al.,
2011; Pei et al., 2011; Leuthardt et al., 2012; Bouchard et al., 2013);
ECoG recordings have high temporal resolution (typically on the
order of 1 ms) combined with reasonably high spatial resolution
(on the order of 1–10 mm on the cortical surface). Thus, ECoG
offers the possibility of studying dynamic changes of functional
connectivity within the speech network, potentially providing a
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powerful tool for deciphering the neural dynamics underlying
speech and other actions or cognitive tasks.

In general, quite complex topologies are derived using mod-
ern neuroimaging techniques. For example, a network consisting
of 100 electrodes (typical in both noninvasive and invasive brain
voltage recordings) may contain up to 4950 edges. Many mea-
sures exist for assessing the organization of these edges (Kolaczyk,
2009; Rubinov and Sporns, 2010). However, principled meth-
ods to determine confidence in these network measures are not
well established. A notion of confidence is particularly impor-
tant when assessing how networks change in time. For example,
during a reading task, we may ask how the functional network
changes during the different stages of the task, starting from visual
and linguistic processing of the stimulus, proceeding to motor
planning and execution, and finally involving the processing of
auditory and somatosensory feedback during speech. In the sim-
plest scenario that two functional networks are established—one
preceding the onset of speech, and the other following—we might
then ask how the density, a network measure defined as the ratio
of the number of detected edges to the number of possible edges
in the network, differs before and after speech onset. To answer
this question in a meaningful way requires a measure of uncer-
tainty in the density. In what follows, we propose a resampling
procedure to estimate the sampling variability of individual edges
as well as to establish confidence intervals for density and other
aggregate network measures.

SIMULATED DATA
Simulated data were generated to mimic ECoG recordings in
which a task is performed multiple times, and the resulting brain
activity observed. For example, a speech task may involve showing
the subject a specific word, which the subject would read multiple
times during the experimental session. In general, we expect the
pattern of correlations between electrodes to vary as a function of
time with respect to task onset. If the task onset is defined as the
start of the behavioral response (e.g., overt speech), there may be
task-related activity and connectivity that precede the task onset,
such as processing of the visual stimulus and motor preparation.
Hence we consider the trials to start before task onset and last
until some time after task onset (specifically, 500 ms before until
500 ms after task onset).

In the simulations performed here, we consider dynamic activ-
ity recorded from nine sensors. The synthetic data at each sen-
sor consist of four dynamic components with a known pattern
of correlations. The first component, pink noise, captures one
feature of brain voltage activity, the “1/f” reduction in power
as a function of frequency common in brain voltage activity
(Miller et al., 2009; He et al., 2010). The second component is
white noise, meant to represent sensor noise. On top of these
two uncorrelated components, two types of correlated signal are
added: 2–50 Hz correlations that exist throughout the record-
ing, and 8–25 Hz correlations that only come into effect during
the trials. The first is meant to represent any persistent cor-
related structure existing in the signals that does not change
during the trials, such as correlations related to the record-
ing apparatus. The trial correlations are meant to represent
task-related changes in the correlation structure. For example,

during a speech task there may be increased correlations between
areas involved in speech, including high-level motor areas, pri-
mary motor cortex, and auditory and somatosensory cortices
(Guenther et al., 2006). While in a true task this structure may
change many times during the different stages of task execution,
in the simulated data we introduce only two known network
structures: one that gradually increases, peaks, and fades away
in the 500 ms before task onset on every trial, and one that
gradually increases, peaks, and fades away in the 500 ms after
task onset on every trial. Details of these networks and how
the simulated data were generated are described in Appendix
(section Construction of Simulated Data) and summarized in
Figure 1.

ECoG DATA
To illustrate the use of the methods on experimental data, we
analyze ECoG time series recorded during overt speech.

Experimental protocol and ECoG recording
The neuronal recordings were collected from a single individual
undergoing treatment for intractable epilepsy involving implan-
tation of subdural electrocorticographic grids, used for localiza-
tion of seizure foci for later resection of epileptic tissue. The
electrodes consisted of two, 1-cm spaced grids positioned over
the frontal and parietal lobes, and the temporal lobe, respec-
tively, and a strip of electrodes over the occipital lobe. Signals
were recorded using g.tec g.USBamp amplifiers (sampling rate
1200 Hz). Data acquisition and stimulus presentation were han-
dled using BCI2000 software (Schalk et al., 2004).

During the task the subject read the Gettysburg Address (272
words) aloud from a video monitor, as the text scrolled from right
to left. The full session lasted 295 s. There were no seizures during
the experimental session, and electrodes near the putative seizure
focus were excluded from the analysis. The subject gave informed
consent to participate, and this research has been approved by the
local institutional review boards.

Preprocessing of ECoG data
The analyses were based on recordings from 90 electrodes. The
slow progression of the teleprompter forced the subject to pause
periodically, and these pauses were used to define a trial struc-
ture. Specifically, trials were defined as any time during the speech
recording where 500 ms of silence was followed by at least 500 ms
of speech, determined using an audio recording of the session.
Hence, each trial lasted 1 s, and contained activity related to read-
ing the word(s), preparing the motor command, and voicing the
word or phrase aloud. Note that the specific words spoken dur-
ing the trials varied. There were a total of 98 trials so defined.
Furthermore, data from silences separated by more than 500 ms
from the beginning or end of any utterance were extracted to
be used in defining the baseline distribution, described below
(section Assessing the Significance of the Test Statistic).

ROI definitions
ROIs were defined anatomically for the subject based on man-
ual inspection of structural MRI by an experienced anatomist.
The 25 regions corresponded to anterior/middle dorsal premo-
tor cortex, posterior middle frontal gyrus, inferior frontal gyrus,
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FIGURE 1 | Illustration of construction of the simulated data.

Predetermined networks (A) were chosen for periods before and after task
onset. Sensor-space networks (A, top row) correspond to region-space
networks (A, bottom row). Node colors correspond to region assignments.
(B) shows how the correlation structure defined in (A) was introduced into
the simulated data, using the after network to illustrate. The correlation
structure in the 500 ms of each trial following task onset consisted of four
instantiations of 8–25 Hz noise (B, left), added to the sensors according to the
defined network (colors in B correspond to the edge colors in the after
network in A). The trial correlations were introduced into a background of

uncorrelated 8–25 Hz noise by windowing (B, top row) in such a way that the
variance remained constant in the total signal (B, bottom row). In addition to
the 8–25 Hz component, three other signals were added: pink noise, white
noise, and a 2–50 Hz signal containing a correlated and uncorrelated part
(C: power spectra; D: time domain). (D) shows sample data for 2.5 s of
baseline and two trials. Vertical black lines correspond to task onset: the
before network is in effect for 500 ms before this time and the after network
is in effect for 500 ms after this time. For more details regarding the
construction of simulated data, see Methods section Simulated Data and
Appendix section Construction of Simulated Data.

pars opercularis, posterior dorsal premotor cortex, middle pre-
motor cortex, ventral premotor cortex, dorsal primary motor
cortex, middle primary motor cortex, ventral primary motor cor-
tex, dorsal somatosensory cortex, middle somatosensory cortex,
ventral somatosensory cortex, superior parietal lobule, anterior

supramarginal gyrus, posterior supramarginal gyrus, fronto-
orbital cortex, temporal pole, anterior superior temporal gyrus,
posterior superior temporal gyrus, anterior middle temporal
gyrus, posterior middle temporal gyrus, anterior inferior tem-
poral gyrus, posterior inferior temporal gyrus, ventral temporal
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cortex, and occipital cortex (Golfinopoulos et al., 2011). Electrode
ROI assignments are indicated by node color in Figure 9.

CONSTRUCTION OF FUNCTIONAL NETWORKS
The specific method for inferring functional network structure
from brain voltage recordings used here contains a set of tech-
niques for analyzing the dynamics, spatial scale, and uncertainty
in network connectivity. While we discuss the behavior of this
technique as a whole, the steps are modular and generally appli-
cable: for example, the coupling statistic could be changed from
correlation to coherence or phase locking value while keeping the
other aspects of the analysis, like uncertainty estimation, intact.
Alternatively, a different technique for correcting for multiple
comparisons could be used to identify binary edge assignments.
Below, we describe our choices for each module of the func-
tional network analysis: preprocessing (including defining trial
epochs), choice of test statistic, p-value calculation through com-
parison to a null distribution, multiple comparisons correction,
and uncertainty assessment. This procedure is also outlined in
Figure 2. One additional module, the selection of network nodes,
is implicit in this analysis. We use two different node definitions
corresponding to the coupling statistics, defining each node as an
individual sensor (for correlation) or all of the sensors in an ROI
(for canonical correlation).

FIGURE 2 | Illustration of construction of functional networks from the

time series data. For each trial epoch of interest (here labeled “Before”
and “After”), the test statistic x̂ij for each potential network edge (between
node i and node j) is calculated over all trials. The test statistic is compared
to a null distribution estimated from baseline intervals, resulting in p-values
for each potential edge, pij . A threshold is chosen for the p-values using a
multiple comparisons correction, resulting in binary networks. Red edges in
the networks indicate false positive edges, identified by comparison to the
true networks. For more detail, see Methods section Construction of
Functional Networks.

Preprocessing of the data
To infer functional networks from the synthetic time series,
the data were first preprocessed by band-pass filtering between
0.1 and 30 Hz using a zero-phase 3rd order Butterworth fil-
ter (Matlab filtfilt function). This preprocessing step was per-
formed to mimic the typical procedure of bandpass filtering
observed brain voltage recordings to eliminate artifacts and
focus on a particular frequency range. The data were then
downsampled to 200 Hz. For the ECoG data, a common aver-
age reference was applied by subtracting the mean over all
channels from each channel at each time step. This step was
intended to reduce referencing effects from the experimental
signals.

In order to analyze time-varying functional connectivity, the
trial data were then divided into epochs of interest spanning the
1s-long trials. Two kinds of epoch were defined. The first were
500 ms non-overlapping epochs consisting of the first and second
halves of the trials (500 ms each, with no overlap), correspond-
ing to “before” and “after” task onset, defined as time zero. The
second kind of epoch used a 200 ms sliding window (195 ms
overlap) over trials, allowing for the construction of “dynamic”
networks on overlapping time points starting from 400 ms before
time zero until 400 ms after time zero (the 200 ms epochs were
labeled according to their time midpoints).

The epochs of interest were collected from all trials result-
ing in a 4-dimensional matrix with dimensions (E × T × N ×
L), where E is the number of epochs, T is the number of
time points per epoch, N is the number of sensors, and L is
the number of trials. For example, using before/after epochs
in the simulations here, there were two epochs, each con-
sisting of 100 time points (corresponding to 500 ms sam-
pled at 200 Hz), nine sensors, and 100 trials. Using dynamic
epochs, there were 162 epochs, 40 time points per epoch
(200 ms sampled at 200 Hz), nine sensors, and 100 trials.
The data from each sensor, trial, and epoch were normalized
by subtracting out the mean and dividing by the standard
deviation.

For each epoch type, a group of non-overlapping “baseline”
intervals were also collected from the baseline period for char-
acterization of the null distribution of the test statistic between
each pair of sensors. We note that the baseline intervals con-
tain no trial data and hence should not contain task-related
correlated activity, yet may possess other correlated activity due
to the persistent correlation signal common to all sensors. The
intervals of baseline data were chosen to have the same dura-
tion as the trial epochs, and were stored in a 3-dimensional
matrix with dimensions (T × N × K), where K is the num-
ber of baseline intervals. For example, for before/after epochs
in the simulated data, 400 non-overlapping intervals of the
(preprocessed) baseline data, 100 time points long, were col-
lected from the baseline period. Note that K does not need
to be the same as L: having more baseline intervals than trials
will improve the estimation of the null distribution (described
in section Assessing the Significance of the Test Statistic). The
baseline intervals are normalized in the same way as the trial
intervals, by subtracting the mean and dividing by the standard
deviation.
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Computing the test statistic
Two measures of coupling (test statistics) were employed to estab-
lish the functional networks: correlation and canonical correla-
tion. For a given epoch, the test statistics were calculated for each
pair of nodes using all trials. Hence calculating the test statistics
resulted in a 3-dimensional matrix with dimensions (E × N ×
N) for sensor-space networks and (E × R× R) for region-space
networks, where R is the number of regions.

We focus on correlations that become more extreme (more
positive or more negative) during the task, so the absolute value
of the raw correlation values was used as the sensor-level test
statistic. The absolute value of the correlation was calculated as:

AbsCorr(x, y) =

∣∣∣∣∣∣∣∣
∑L

l= 1

∑T
t= 1 xl(t) yl(t)√(∑L

l= 1

∑T
t= 1 xl(t)2

) (∑L
l= 1

∑T
t= 1 yl(t)2

)
∣∣∣∣∣∣∣∣

where xl(t) and yl(t) are the voltage at time t of the given epoch
of trial l for sensors x and y, respectively.

Canonical correlation was chosen as a region-level coupling
measure because of its relationship to the sensor-level correla-
tions. A common measure of network topology (used to describe
networks that have already been constructed) involves the identi-
fication of groups of nodes (e.g., communities). However, when
analyzing multivariate data recorded from the brain, there often
exists an a priori natural grouping of nodes belonging to a
region of interest (e.g., a brain region associated with a particular
function). By using a classical statistical multivariate technique—
canonical correlation—connectivity between groups of channels
can be studied in a principled way. Canonical correlation finds
the linear combinations of the group members such that the lin-
ear combinations are maximally correlated. Canonical correlation
is reported in classical texts on multivariate statistics (e.g., Mardia
et al., 1979; Anderson, 2003). When a priori knowledge of sig-
nal presence on group member channels is not known, canonical
correlation possesses increased statistical power and is a power-
ful method of dimensionality reduction in the context of network
analysis. This is discussed further in Results section Advantages of
the Canonical Correlation Measure.

Formally, the canonical correlation between two groups of sig-
nals �x = (x1, ..., xn)

T and �y = (y1, ..., ym)T seeks to find linear
combinations of �x and �y that are maximally correlated:

CanonCorr(�x, �y) = max
�a,�b

Corr
(
�aT�x, �bT�y

)

For convenience, we will switch to matrix notation: X and Y are
(n× LT) and (m× LT) matrices, respectively, containing a row
of appended trial voltages for each sensor in the region. The
optimization problem for canonical correlation is solved using
the singular value decompositions (Strang, 2003) of X and Y ,
X = UX�XV†

x and Y = UY�Y V†
Y . The canonical correlation is

the first singular value of the matrix QXY = UXV†
XVY U†

Y .

Assessing the significance of the test statistic
After computing the test statistic between each pair of nodes, a
p-value is computed using the null hypothesis that the test statis-
tic for that edge comes from the same distribution as the baseline
period (which lacks task-related activity). The alternative hypoth-
esis is that the test statistic is too large to be from the baseline
distribution. For example, in our analysis of speech data we use
a null distribution estimated from epochs of time without speech
(i.e., silence). Note that for simplicity we have chosen a one-sided
hypothesis test, focusing only on correlations or canonical corre-
lations that are larger than baseline. All of the methods described
here could be developed for a two-sided hypothesis test, allowing
for both higher and lower correlations and canonical correlations
than baseline.

In order to estimate the null distribution, a bootstrap pro-
cedure is employed involving resampling of the baseline data.
In particular, for each bootstrap sample, L baseline intervals
(described in section Preprocessing of the Data) are sampled with
replacement from the K total baseline intervals. The test statistic
for each potential edge is calculated from these baseline intervals
just as it was for the set of trial intervals. Here, 1000 bootstrap
samples were processed in this way, thus building an empirical
distribution for the test statistic from the baseline period for each
potential edge.

In order to determine a p-value associated with each edge,
the test statistic is computed during the epoch of interest and
compared to the null distribution. Specifically, the p-value asso-
ciated with the edge between node i and node j is calculated as
the number of samples in the bootstrapped empirical distribu-
tion for nodes i and j that fall above the observed test statistic
between nodes i and j, divided by the total number of bootstrap
samples (here we use 1000 samples for simulated data, and more
for the real data: for discussion, see Appendix section Sparsity of
Networks and Null Distribution Resolution Effects). When the
test statistic is larger than any of the samples in the empirical
distribution, this method assigns a p-value of zero, which is unre-
alistic. To account for this, we set all zero p-values to the smallest
possible p-value for the number of bootstrap samples (e.g., 1/1000
for the simulated data).

Correcting for multiple comparisons
After a p-value has been computed for each potential edge,
a correction for multiple comparisons is performed using the
Benjamini–Hochberg procedure to control for False Discovery
Rate (hereafter referred to as the FDR procedure; (Benjamini and
Hochberg, 1995)). This procedure sets a theoretical limit, q (here,
0.05), on the expected number of falsely detected edges as a pro-
portion of the total number of detected edges. The procedure first
sorts the p-values in increasing order and then chooses the highest
integer k such that:

p(k) ≤ qk

NMC

where NMC is the total number of comparisons being performed,
and p(k) is the kth smallest p-value. The FDR procedure thus
selects a set of edges to consider significant such that only 5% of
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the detected edges are expected to be false positives. In contrast, a
typical p-value threshold of α = 0.05 implies that 5% of all possi-
ble edges will be expected to be false. The FDR procedure is thus
expected to have many fewer false detections than would occur
with a 5% p-value threshold. Note that when the null distribution
is estimated from data, as it is here, more than the expected num-
ber of false positives may occur in the network due to sampling
bias (Dudoit and Laan, 2008).

The resampling approach used here to estimate the baseline
null distributions, combined with the FDR procedure for multiple
comparisons correction, imposes a lower bound on the number
of edges that can be detected in the networks. This lower bound
scales with the square of the number of nodes in the networks,
so it can become large for a network with many nodes. This phe-
nomenon and some approaches to dealing with it are discussed
more in the Appendix (section Sparsity of Networks and Null
Distribution Resolution Effects).

After the FDR procedure has been applied, the resulting assess-
ment of test statistics as significant or not significant is used to
define a binary network for the epoch of interest. This procedure
is repeated for all epochs of interest (e.g., 500 ms before and after
time zero), creating a dynamic series of networks. Note that the
null distributions do not need to be estimated separately for each
epoch. The null hypothesis is defined in terms of baseline dis-
tributions for each potential edge that are independent of trial
epoch, so the same estimated distributions can be used for all
epochs. The procedure for constructing a functional network is
also illustrated in Figure 2.

ASSESSING UNCERTAINTY
We focus on assessing the uncertainty of two network features:
(1) edge existence, and (2) network density—the total number of
edges in a network divided by the number of possible edges. To do
so, we employ a classic nonparametric bootstrap procedure, mak-
ing use of the trial-structure of the data (Efron and Tibshirani,
1993). Specifically, the time series data from the trials are resam-
pled with replacement, the test statistic at each potential edge is
calculated over the resampled trials, p-values are computed by
comparison of the test statistic to the same baseline distribution
used above, the p-values are thresholded using FDR to create a
binary network, and an aggregate network measure (the density)
is computed for the network. This process of resampling generates
a population of surrogate networks (here we use 100 bootstrap
samples) that can be used to approximate the true network popu-
lation. For example, the probability of each edge can be estimated
as the proportion of the surrogate networks that contain that
edge. Statistically, this approach treats each potential edge as a
Bernoulli random variable with parameter p, the probability of
“success,” or the probability of observing an edge. The variance
is therefore equal to p(1− p). Hence, estimating the probability
of an edge allows us to assess the variability of the network edges
themselves.

For an aggregate network statistic such as the density, the dis-
tribution of the statistic calculated on the resampled networks
is an estimate of the true sampling distribution of the statistic.
Here, we estimate the standard error of the density as the standard
deviation of the resampled densities, ŝ. Then, a 95% confidence

interval around the observed network density dobs is constructed
using a Gaussian approximation as

[
dobs − 1.96ŝ, dobs + 1.96ŝ

]
.

The estimates of the sampling distributions of networks
and network statistics constructed this way are biased because
each surrogate network is constructed using fewer unique tri-
als than the original network (constructed using all trials).
This results in decreased degrees of freedom in the surro-
gate networks, which has the effect of increasing the occur-
rence of false positives. This is similar to training-set-size bias
that occurs in prediction error estimation (Hastie et al., 2009).
Increasing the number of false positives will tend to increase
the probability of individual edges and the overall density of
the surrogate networks relative to the original network. Hence,
(1) the estimated probabilities of edges reported below will
have a small upward bias, and (2) the full bootstrap distribu-
tion of densities estimated as described above will be biased
upward. Note that we chose to construct confidence inter-
vals of the density using only the standard error of the boot-
strap distribution, in part to mitigate this issue. Alternative
approaches exist, including the construction of confidence inter-
vals using quantiles of the bootstrap distribution, possibly
correcting for the bias using a technique such as the “Bias-
Corrected and Accelerated” method (BCa) (Efron and Tibshirani,
1993).

See Appendix (section Network Inference Algorithm Structure
Including Uncertainty Estimation) for the full algorithm.

RESULTS
In this section we apply the network inference procedure
described above to construct functional networks from synthetic
data. We consider different simulation scenarios to illustrate the
utility of the method in assessing the dynamic evolution of net-
works, in the principled spatial aggregation of network nodes
using canonical correlation, and in the determination of uncer-
tainty in network edges and measures.

DYNAMICS
Inference of functional networks before and after task onset
To begin we consider the scenario in which the only coupled activ-
ity between electrodes appears during trials. Outside of these time
intervals, the simulated activity for each electrode consists only of
uncorrelated noise; in these simulations, no correlated baseline
activity exists between the electrodes (i.e., the constant correla-
tions were set to zero, see Methods section Simulated Data and
Appendix section Constant Correlations). We perform these sim-
ulations for four different levels of signal-to-noise ratio (SNR).
Functional networks were constructed using both the correla-
tion and canonical correlation for these simulated data in two
intervals: one interval immediately before the onset of the task
(the first half of the trial), and another immediately after the
onset of the task (the second half of the trial); both intervals
are of duration 0.5 s. As expected, the network inference proce-
dure identifies the appearance of the correct functional network
before and after task onset when the SNR is sufficiently large. This
occurs for networks computed using both correlation (Figure 3A)
and canonical correlation (Figure 3C). Note that for the cor-
relation networks, edges appear between the (nine) individual
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FIGURE 3 | Detected networks reflect the true correlation structure for

sufficiently high SNR. Correlation and canonical correlation networks are
shown before and after task onset, for simulations with varying SNR. (A) Binary
correlation networks for 500 ms before task onset (left) and the 500 ms after
task onset (right). True positive edges are colored black, false positive edges are
colored red. (B) Bootstrapped probability of each edge for the correlation before

(left) and after (right) networks. Probabilities are indicated in grayscale from 0
(white) to 1 (black); scale bar at bottom right of the figure. (C) The same as
(A), but for canonical correlations between regions. (D) The same as (B), but for
canonical correlations between regions. Plots (A–D) are shown in the rows for
four different levels of SNR: 0.00, 0.05, 0.10, and 0.15. True networks are shown
in the bottom row. In all networks, nodes are color-coded according to region.

nodes, while for the canonical correlation networks, edges appear
between the (three) ROIs.

In addition to the binary network inference, the proposed
method permits a characterization of the confidence in each edge.
For both the correlation and canonical correlation networks, we
associate with each edge a probability of appearance (determined
through resampling, see Methods section Assessing Uncertainty).
As expected, edges that appear in the binary networks possess
a high probability of appearance in the correlation (Figure 3B)
and canonical correlation (Figure 3D) networks. These results
illustrate that the network inference procedure—and associated
measures of edge uncertainty—accurately identify the underly-
ing network when no coupled baseline activity exists between the
nodes, even when the SNR is relatively small (0.1).

To summarize how the network topology changes from the
interval before task onset to the interval after task onset, we com-
pute a fundamental network measure: the density (see Methods).
For the true network, the density is 3/36 = 0.083 before task
onset, and 6/36= 0.167 after task onset. At each level of SNR, the
density for the correlation networks is easily computed from the
resulting binary networks in Figure 3A (SNR = 0.00, before = 0,
after= 0; SNR= 0.05, before= 0.028, after= 0.028; SNR= 0.10,
before= 0.083, after= 0.167; SNR= 0.15, before= 0.111, after=
0.167). In addition to this single density value, we also deter-
mine the confidence interval for each density value (Figure 4). To
compute these confidence intervals, we use the resampling pro-
cedure described in Methods section Assessing Uncertainty. We
find that, as the SNR increases, the density before and after task
onset also increases. In addition, at larger SNRs (namely, SNR =

0.10, and SNR = 0.15), the confidence intervals for the densities
of the inferred correlation networks include the known true net-
work densities (Figure 4). The confidence intervals at an SNR of
0.05 do not enclose the true network density value after task onset,
highlighting the fact that the estimated confidence intervals may
themselves be biased, here toward zero, and are variable due to the
limited sample of trials used to estimate them. In summary, this
approach provides a technique to calculate not only the aggre-
gate network measure (density), but also an associated level of
confidence. The results for the canonical correlation networks are
similar (in this case, the true network density is 2/3= 0.66 before
task onset and 1/3 = 0.33 after task onset) and are not included
here.

Next we consider how the network inference procedure per-
forms when additional coupling not related to the task exists
in the data. This “constant” coupling corresponds to persis-
tent correlations between the nodes that occur throughout the
recording, i.e., both in the baseline periods and during the tri-
als (described in Methods section Simulated Data and Appendix
section Constant Correlations). The simulations varied by “corre-
lation ratio,” which we define to be the ratio of the variance of the
correlated trial component to the variance of the constant corre-
lated component. Hence a small value of the correlation ratio rep-
resents weaker trial correlations relative to background (nuisance)
correlations (see Appendix section Construction of Simulated
Data for more detail). We apply the network inference procedure
to the data, and find good performance (Figure 5); the inferred
binary networks agree with the true networks. Interestingly, spu-
rious edges do not appear in the binary correlation networks
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with trial correlations equal to or lower than constant correlations
(ratios 1.0 and 0.5, respectively), but do appear in the simulation
in which the trial correlations were twice as strong as the con-
stant correlations (red lines in Figure 5A, for correlation ratio
of 2.0). Computing the probability of each edge shows that the
spurious edges possess lower probability of appearance, while
the true network edges are highly probable (Figure 5B). In this
way, determination of the edge probability provides additional
information to help identify spurious network edges. We note
that, for the canonical correlation, these spurious edges are not
present. Instead, the appropriate edges between the ROIs are cor-
rectly identified (Figure 5C), with high probability (Figure 5D).
In this way the canonical correlation measure provides addi-
tional robustness to the appearance of spurious edges between
individual node pairs.

FIGURE 4 | Density estimates improve with increasing SNR. Density of
bootstrapped correlation networks in the before and after trial epochs are
shown, for simulations with four different SNRs: 0.00, 0.05, 0.10, and 0.15.
For details of the bootstrapping procedure, see Methods section Assessing
Uncertainty. Bar height indicates the observed density, and whiskers
indicate 95% bootstrapped confidence intervals. The true values of the
density in the before and after networks are indicated with diamonds.

Analysis of the correlation network density in the presence of
constant correlations (Figure 6) reveals that the 95% confidence
intervals of the density contain the true density in all cases, even
when the observed network contains false positives. These results
show that even for weak values of trial-specific correlation (com-
pared to constant correlation), the estimate of network density is
accurate.

We note that these simulation results correspond to a sin-
gle instantiation of the synthetic time series data consisting of
multiple trials. We focus only on a single instantiation to mimic
the typical experimental paradigm, in which an individual sub-
ject performs the experiment once. Repeating the analysis for
different instantiations (i.e., with different values of noise) we
find similar qualitative results: namely, that the network inference
procedure correctly identifies the true underlying network and
changes in density (results not shown). What differs across these
instantiations is both the number and location of false positive
and false negative edges.

Inference of dynamic functional networks
In section Inference of Functional Networks Before and After
Task Onset, we illustrated how the inferred functional networks
changed from an interval immediately preceding task onset, to
an interval immediately after task onset. We now further explore
the applicability of the network inference procedure to dynamic
(i.e., time-indexed) networks. To do so, we consider the same
task-related data, but infer functional networks from overlap-
ping windows of duration 0.2 s (0.195 s overlap) that begin 0.4 s
before task onset, and end 0.4 s after task onset (networks are
labeled by their midpoint, e.g., the network at time −0.4 s rep-
resents data from −0.5 s until −0.3 s). Task onset is defined to
be time 0 s. Within each window, we apply the network inference
procedure described above, and compute a binary network and
the density with an associated confidence interval. We show the

FIGURE 5 | True networks can be detected in the presence of

background correlations. Correlation and canonical correlation networks
are shown before and after task onset, for simulations with varying
correlation ratio. (A–D) as in Figure 3, shown in the rows for three

different levels of the ratio of trial correlation variance to constant
correlation variance: 0.5, 1.0, and 2.0. All simulations have a fixed SNR of
0.11. False positives are indicated in (A,C) by red edges. True positives
are displayed in black.
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FIGURE 6 | Confidence intervals on network density include the true

density, even in the presence of baseline correlations. The density of
bootstrapped correlation networks is plotted before and after task onset,
for simulations with three different levels of the correlation ratio: 0.5, 1.0,
and 2.0. Bars, confidence intervals, and true density as in Figure 4.

resulting dynamic correlation and canonical correlation networks
for increasing SNR in Figure 7. For comparison, we show both the
dynamic density estimate with confidence intervals (Figure 7A)
and example inferred functional networks (Figure 7B) for each
value of SNR. In both cases, as the SNR increases, the inferred
functional networks more accurately capture the true networks.
We note that, even for low SNR (=0.05), a significantly non-zero
increase in density appears following task onset for the correlation
networks. However, before task onset the confidence intervals
rarely achieve significantly nonzero density. We note that the
bootstrap density distributions tend to exceed the true density
and possess long tails due to the occurrence of false positive edges
(not shown). This leads to a large standard error that is rela-
tively insensitive to SNR, and confidence intervals that include
zero in this procedure. The same issue arises in the canonical
correlation networks after task onset for high SNR. An alterna-
tive approach based on quantiles of the bootstrap distributions
(Efron and Tibshirani, 1993) would account for this asymmetry
in the sampling distribution, although these confidence intervals
would be subject to bias (discussed in Methods section Assessing
Uncertainty).

When constant correlations are introduced, we find results
similar to the SNR simulation (Figure 8). Although spurious
edges do appear in the correlation networks (see Figure 8B), the
inference procedure accurately identifies the true networks both
before and after task onset (examples in Figure 8B). In addition,
the confidence intervals for the density exclude zero, and include
the known density value before and after task onset in some
cases (Figure 8A); for the reasons described above, the correlation
networks before task onset and the canonical correlations after
task onset often do not achieve significant nonzero density. In
this way, the establishment of confidence intervals for the aggre-
gate network measure (density) permits identification of dynamic
changes in network structure. Surprisingly, in the presence of
strong baseline correlations (ratio 0.5, when baseline correlations
are twice as strong as trial correlations), the variability of the
canonical correlation networks is very small after task onset: all of
the bootstrapped networks had one edge, leading to an estimate
of zero for the standard error. In this case, the presence of back-
ground correlations causes the baseline canonical correlations to

be higher, making it more difficult for spurious correlations to
appear as false positives in the network estimation. Hence, the
presence of background correlations may in some cases make
network inferences more robust to noise under this framework.

ECoG DATA
To demonstrate the use of the network inference procedure on
real data, we analyze an ECoG dataset in which a subject read
aloud from a teleprompter. Trials are defined by the 500 ms pre-
ceding and following speech onset (see Methods section ECoG
Data), which includes preparatory activity before speech onset
in addition to activity related to motor execution and feedback
after speech onset. Visual inspection of the binary correlation
networks before and after speech onset is hindered by the large
number of edges (Figure 9A), although the network after speech
onset appears more dense. This is confirmed by the density plot
(Figure 9B), in which the density after speech onset is higher
than before, and significantly nonzero. In fact, the density before
speech onset is also significantly nonzero, by a narrow margin.
The trend of higher density after speech onset also appears in
the canonical correlation networks (Figure 9C), although nei-
ther achieves significant nonzero density (Figure 9D). With fewer
nodes and edges, the canonical correlation binary networks
(Figure 9C) are easier to interpret anatomically: for example, the
region corresponding to ventral primary motor cortex [indicated
with an asterisk (∗)] has two edges before speech onset and six
edges after speech onset, showing local coupling with premotor
and primary motor cortex during motor planning that expands
during speech execution to somatosensory cortex and the supra-
marginal gyrus. These patterns are consistent with speech pro-
cessing areas identified by fMRI (Hickok and Poeppel, 2007; Price,
2012).

ADVANTAGES OF THE CANONICAL CORRELATION MEASURE
The results in the previous section illustrate the utility of the net-
work inference procedure for both the correlation and canonical
correlation measures. We found that the canonical correlation
provides additional robustness to the appearance of spurious
edges between individual node pairs. We now consider two
additional examples that illustrate the utility of the canonical
correlation measure in functional network inference.

Canonical correlation improves detectability of weak inter-regional
connections
One advantage of region-level analyses is that weak connectivity
undetectable at the sensor level can be aggregated in such a way
as to become detectable at the region level. To illustrate this idea,
we constructed a simple scenario with 10 sensors comprising two
regions of five sensors each (Figure 10). During trials, every sen-
sor from Region 1 (red nodes in Figure 10) is weakly connected
to every sensor from Region 2 (green nodes in Figure 10): while
the total SNR on each sensor is approximately 0.14, the corre-
lated signals contributing to each true edge are weak, with SNR
of about 0.03. Figure 10 shows that, while the correlations are
too weak to be detected in sensor-space networks, in the region-
space networks the canonical correlation between the two regions
is strong enough to reveal the true edge. There are two reasons
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FIGURE 7 | Dynamic changes in network structure are better resolved at

higher SNRs. Correlation and canonical correlation networks are shown as a
function of time with respect to task onset, for simulations with varying SNR.
(A) Density of observed networks as a function of time (black), with 95%
bootstrapped confidence intervals (shaded gray). The timing of four example
binary networks (B) is indicated by black vertical lines, and the true densities

are indicated by horizontal black lines. In (B), network edges that exist in the
true network are shown in black and false positive edges are shown in red. In
all networks, nodes are color-coded according to region. (A,B) are shown for
correlation (left) and canonical correlation (right) networks, for three different
levels of SNR: 0.05 (top), 0.10 (middle), and 0.15 (bottom). True networks are
shown in the bottom row.

for the improved performance of the region-space analysis. First,
the weak connections between the sensors are combined in the
canonical correlation calculation, increasing the effective SNR
and statistical power. Second, the region-space network has many
fewer edges (in this case only one), making the FDR correction
for multiple comparisons much less severe and allowing higher
p-values for the test statistics to be classified as edges.

Canonical correlation outperforms signal averaging within ROIs
In the fMRI literature, it is common to combine the signals from
many image voxels into functional ROIs, each containing a large
number of neurons believed to be performing a common func-
tion. In studies of speech production, for example, commonly
used ROIs include the ventral premotor cortex, which contains
neurons that represent syllabic motor programs, the supplemen-
tary motor area, which contains neurons that initiate the readout
of speech motor programs, and the ventral primary motor cor-
tex, which contains neurons involved in generating commands
to the articulatory musculature (Tourville et al., 2008; Peeva
et al., 2010; Golfinopoulos et al., 2011). ROI-based analyses can
increase statistical power for activity contrasts and connectivity

analyses by (1) reducing the number of statistical tests and corre-
sponding correction for multiple comparisons, and (2) averaging
many noisy measurements together to form a single, more stable
measure for each ROI (Nieto-Castanon et al., 2003).

In the case of fine time-resolution voltage recordings (e.g.,
scalp EEG or invasive ECoG), the fast dynamics of the signals
within a region may not be phase-aligned; therefore, the averaged
signals may interfere and cancel in the sum, or the SNR may be
reduced. Canonical correlation does not require averaging, and
can effectively detect and aggregate signals between sensors even
when the sensor signals are not phase aligned. To demonstrate
this, we constructed two example scenarios, each containing nine
nodes that are split into three regions, of which only two regions
are connected by an edge (Figure 11).

In the first scenario (Figure 11A), one signal is shared by two
sensors in the green region and two sensors in the blue region,
but the sign of the signal is reversed on one sensor in each region
such that the average signal within each region is zero. This
creates a completely connected subnetwork, where the sensors
within each region are perfectly negatively correlated. In this case,
averaging the signals within each region cancels the correlated
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FIGURE 8 | Dynamic network structure can be detected in the presence

of baseline correlations. Correlation and canonical correlation networks are
shown as a function of time with respect to task onset, for simulations with

varying correlation ratio. (A,B) as in Figure 7, shown for correlation (left) and
canonical correlation (right) networks, for three different levels of correlation
ratio: 0.5 (top), 1.0 (middle), and 2.0 (bottom).

FIGURE 9 | The network inference procedure facilitates interpretations of

real ECoG data. Binary correlation (A) and canonical correlation (C) networks
were inferred from speech data in the intervals 500 ms before (left) and
500 ms after (right) speech onset. The corresponding densities are
significantly nonzero for both correlation networks (B), but not for the

canonical correlation networks (D). The node colors in (A) represent for each
electrode the corresponding ROI, shown in (C). Node locations in (C) are the
average locations of the electrodes corresponding to the ROI. In (C), the
node indicated by an asterisk (∗) is the ventral primary motor cortex ROI,
which is discussed in the text (Methods section ECoG Data).
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FIGURE 10 | Canonical correlation improves detectability of weak

inter-regional connections. While the total SNR on each electrode is about
0.14, the correlated signals contributing to each true edge (5 per node) are
weak, with SNR of about 0.03. For more details about the simulation, see
Results section Canonical Correlation Improves Detectability of Weak
Inter-Regional Connections (“Example 1” in Table A1). Shown are the true
network (left), binary network (middle), and P(edge) (right) for correlation
and canonical correlation networks. In all networks, nodes are color-coded
according to region, and edges occur between regions.

component, resulting in only the noise component. Hence, the
correlation between the averaged region signals is zero and no
edge is detected (middle row). The canonical correlation network,
however, does detect the edge (bottom row), because a change of
sign on the individual sensors can be compensated by the coef-
ficients in the linear combination (vectors �a and �b in Methods
section Computing the Test Statistic).

The second scenario (Figure 11B) illustrates a related point:
that averaging signals within regions assumes that the sign of
the correlation will be the same for all connections between the
regions. In this scenario, one sensor from the green region has a
positive correlation with one sensor from the blue region, while a
second sensor in the green region has a negative correlation with
a sensor from the blue region. At the sensor level, a negative cor-
relation during trials represents an increase in the magnitude of
the correlation, so the sensor-level networks detect both edges
despite the fact that one reflects a positive correlation and the
other reflects a negative correlation (top row). For region level
networks, however, canonical correlation detects the true struc-
ture (bottom row) while averaging the signals within the region
does not (middle row). This is because averaging the signals in the
two regions combines the effects of the positively and negatively
correlated edges, resulting in a combined signal that is neither
positively nor negatively correlated. Hence the edge between the
regions is not detected in the region-averaged network (mid-
dle row). Canonical correlation, however, is not sensitive to the
sign of the correlations between sensors because of the free-
dom in the linear combination (Methods section Computing the
Test Statistic), so it detects the edge in the region-level network
(bottom row).

DISCUSSION
Here we described a method to infer functional networks from
time series data recorded from multiple sensors in a task-related
paradigm. In doing so, we tracked the changes in dynamic net-
work topology over time, and established measures of uncertainty
for both individual edge and aggregate network measures. We

FIGURE 11 | Canonical correlation outperforms signal averaging within

ROIs. In (A), labeled “Example 2a” in Table A1, the signals on the
electrodes within each region precisely cancel. In (B), labeled “Example
2b” in the Table A1, the signals on each edge are independent (so the
signals on the electrodes do not precisely cancel in the region averages),
but one edge represents a positive correlation and the other edge
represents a negative correlation. For more details about the simulations,
see Results section Canonical Correlation Outperforms Signal Averaging
Within ROIs. (A,B) show the true network (left), binary network (middle),
and P(edge) (right) for correlation networks (top), networks resulting from
averaging the signals on the electrodes within the regions and calculating
the correlations between the resulting region-level signals (middle), and
canonical correlation networks (bottom).

also introduced an additional measure of coupling—canonical
correlation—which provides a principled approach to aggregate
sensor activity, and improves robust detection of network struc-
ture. We illustrated the performance of the network inference
procedure applied to synthetic data in a variety of simulation sce-
narios, and verified its utility when used with experimental ECoG
data. In this section, we summarize the primary features of this
research, mention associated limitations, and suggest avenues for
future research.

PRINCIPLED CHOICES IN FUNCTIONAL NETWORK ANALYSIS
In this manuscript, we described a specific procedure for func-
tional network inference. This procedure can be broken down
into several modules that can be individually substituted with
other choices without significant modification of the overall pro-
cedure. The modules include: (1) choice of trial epochs: here we
used two kinds of epochs, 500 ms before and after task onset or
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200 ms sliding windows over the duration of the trials; (2) selec-
tion of network nodes, either treating each sensor as a separate
node or choosing groups of sensors according to, e.g., anatomical
region; (3) choice of coupling measure: here we used correlation
and canonical correlation; (4) choice of method for estimating
the null distribution: here we used bootstrapping on baseline
intervals; (5) choice of method for correcting for multiple com-
parisons, here FDR; and (6) choice of method for estimating
uncertainty in edges and network measures: here we used boot-
strapping over trials and standard error confidence intervals (see
Methods).

The methodology developed here could be extended to accom-
modate alternative choices. For example, the coupling measure
used to define edges could be replaced by a frequency domain
measure (e.g., coherence or canonical coherence) or a nonlinear
coupling measure (e.g., synchronization likelihood: Stam and Van
Dijk, 2002; Pereda et al., 2005). In this case, the same procedures
for estimating the null distribution, correcting for multiple com-
parisons, and estimating edge and network uncertainty can still be
used. In summary, the framework discussed here illustrates a spe-
cific implementation of a functional network inference procedure
that researchers may adapt to suit their own needs.

TRACKING OF DYNAMIC NETWORK TOPOLOGY OVER TIME
As brain activity changes dynamically to achieve specific func-
tions (e.g., to respond to external stimulation), we expect that
coupling between the activity from separate brain areas will
also change. Because of this, the resulting functional networks—
deduced for sensors observing these brain areas—will also change
dynamically. To accurately track these dynamic changes requires
that we choose analysis intervals of sufficiently short temporal
duration. However, choosing a short temporal interval reduces
the number of data points employed in the coupling analysis, and
therefore reduces the statistical power of any coupling measure.
The effect is mitigated for the task-related data considered here.
In this case, the multiple repetitions of the task provide increased
statistical power. In addition, the multiple trial structure permits
a principled resampling procedure. Extending this approach to
spontaneous data that lacks a task-related structure would require
additional careful considerations, including whether resampling
is appropriate.

SPATIAL SCALE
One approach to dealing with issues of spatial scale is to group
nodes into interconnected sub-groups after a full network has
been constructed (Salvador et al., 2005; Ferrarini et al., 2009;
Kolaczyk, 2009; Meunier et al., 2009; Rubinov and Sporns, 2010).
These types of approaches can identify functional clusters in net-
works and were not considered here. However, clustering on
sensor-space networks could be used to define ROIs for subse-
quent ROI-based analyses, suggesting a multi-step procedure that
utilizes fine spatial resolution networks to inform networks with
coarser spatial resolution.

Note that in situations in which functional regions are known
beforehand, using knowledge of ROIs can improve network infer-
ence. For example, in Results section Canonical Correlation
Improves Detectability of Weak Inter-Regional Connections,
we illustrated a situation in which region-level connectivity

was too weak to be visible in sensor-space networks, and the
greater power of region-level analysis was necessary to detect the
connection.

A priori knowledge of ROIs can also be used to perform
across-subject analyses in situations when it would otherwise be
difficult. For example, in ECoG recordings, the electrode loca-
tions typically differ for each subject, but the spatial coverage of
the electrodes often overlaps across subjects. Using the same ROIs
to construct region-level networks for each subject could facil-
itate across-subject comparisons. In addition, the data for each
ROI could be aggregated across subjects before network construc-
tion and aggregate across-subject networks could be estimated.
These across-subject networks could be calculated as a function
of time during a task, with the goal of detecting dynamic changes
in connectivity that are not subject-specific.

The specific coupling measure used here for region-level net-
work inference, canonical correlation, is a particularly robust
tool for detecting connectivity between predefined regions. As
described above, fMRI studies often average the signals of vox-
els within functional ROIs. We showed two examples of how
averaging signals within an ROI can mask inter-regional correla-
tions (Results section Canonical Correlation Outperforms Signal
Averaging Within ROIs) that are detected using canonical corre-
lation. In the first scenario, signals within an ROI are responsive
to task onset but with opposite sign; in this case averaging results
in a net signal for the ROI that is not responsive to task onset,
which in turn results in weak or nonexistent correlations between
the ROI and other ROIs involved in the task. This could occur
in physiological data in which electrode location relative to an
electrical source induces a change in sign of the recorded activ-
ity between neighboring electrodes (e.g., Wood et al., 1988). In
the second example, two ROIs are both positively and negatively
correlated with each other, through different pairs of electrodes.
This situation could also occur in real data in which the location
of neighboring electrodes may lead to a reversal in sign (Wood
et al., 1988; Buzsaki et al., 2012). In this case the averaged signal
for each ROI is still responsive to task onset, but averaging the
signals masks the positive and negative correlations with other
regions. Our simulation results demonstrate that canonical cor-
relation successfully identifies inter-regional correlations in these
situations.

One drawback of canonical correlation is that it can depend
on the number of signals (electrodes) in the groups (ROIs) being
compared: because more signals provide more degrees of freedom
for the linear combinations involved in the calculation, canoni-
cal correlation values tend to be higher when calculated between
ROIs with more component electrodes. Here, the raw canonical
correlation value between two ROIs is compared to a baseline dis-
tribution calculated on the same two ROIs, so ROIs with more
electrodes do not necessarily have a greater probability of edge
detection. On the contrary, due to ceiling effects (canonical cor-
relation values are bounded above by one) it may be difficult for
ROIs with large numbers of electrodes to achieve significance in
comparison of trials to baseline. In our simulations, we consid-
ered the case where all ROIs have the same number of electrodes.
For the ECoG data, the size of each ROI depended on the num-
ber of electrodes that happened to lie over the anatomical ROIs,
so ROIs had varying numbers of component electrodes. While
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ROIs with large numbers of electrodes do have edges in the net-
works inferred here, it is possible that there are imbalances in the
inference that are affecting the resulting networks. Further inves-
tigation into differing electrode counts for different ROIs is left
for future study.

ASSESSMENT OF UNCERTAINTY IN NETWORK EDGES AND
AGGREGATE NETWORK MEASURES
An important component of the network inference procedure
outlined above is the ability to assess uncertainty in network
structure and aggregate network measures. To do so, we resam-
pled the task-related data, and established both the probability of
appearance for each individual edge, and confidence intervals for
the network density. Although we focused on only a single aggre-
gate measure here (the density) this procedure is easily extended
to determine confidence intervals for other aggregate network
measures (e.g., clustering coefficient, path length, etc.). We note
that the resampling procedure described here requires repeated
occurrences of the time period of interest, such as occurs in a task-
related structure, and may not be appropriate for data lacking this
structure. In addition, the resampling procedure is computation-
ally expensive, and for a large number of resamples would require
sophisticated computational approaches.

While we focus on brain voltage data (ECoG and EEG) here,
there is some precedence of the use of bootstrapping to estimate
network variability in the fMRI resting state functional connec-
tivity literature. For example, bootstrapping has been used to
test whether seed-based resting state connectivity is dependent
on signal stationarity (Chang and Glover, 2010) and phase cou-
pling (Handwerker et al., 2012). Bootstrapping has also been
used to test for group differences in functional networks between
schizophrenia patients and controls (Sakoglu et al., 2010) and
between genders (Kilpatrick et al., 2006). Allen et al. (2014) used
bootstrapping to assess the reliability of estimated network states,
defined by clustering dynamic networks occurring over the course
of an experimental session.

Bootstrapping has also been used in EEG functional connec-
tivity, albeit in the context of network inference. Murias et al.
(2007) used bootstrapping to compute p-values for pairs of elec-
trodes under the null hypothesis that coherences did not differ
between children with attention deficit hyperactivity disorder
(ADHD) and controls. These p-values were then used to define
edges in a functional network, similar to our network inference
approach (Methods section Assessing the Significance of the Test
Statistic).

ROBUSTNESS TO PERSISTENT CORRELATIONS
By allowing the null distribution to be different for each poten-
tial edge, systematic spatial regularities in the correlations are
mitigated. In the case of a speech task, correlations unrelated
to speech may exist in the data for many reasons, including the
influence of resting state networks, volume conduction, and ref-
erencing effects. As long as these regularities are present in the
baseline data to the same extent as the task data, these correlations
will not appear as edges in the networks since the correlations
during speech must be stronger than the correlations during the
baseline silent periods in order to achieve significance. Volume

conduction due to deep subcortical sources of electrical activ-
ity may also confound inference of functional networks. For the
task-related data of interest here, a deep subcortical source not
present during silence that emerges during the task could intro-
duce correlations during speech that would be interpreted by the
procedure as edges. These edges are spurious, in that the edge does
not represent correlated cortical activity appearing locally at each
sensor. While this is a valid concern, strategies exist to mitigate
volume conduction effects, including re-referencing procedures
in scalp EEG. Moreover, invasive recording modalities—such as
the ECoG—are proposed to be relatively insensitive to distant
electrical sources (Zaveri et al., 2009).

SCALABILITY AND CHALLENGES RELATED TO EXPERIMENTAL DATA
One of the key difficulties in network construction is the issue
of multiple comparisons: a test statistic is computed for each
pair of electrodes, so a 100-electrode network (typical in ECoG
recordings) represents 4950 statistical tests. Here, we account for
multiple comparisons using the FDR procedure, which controls
the proportion of false positive edges relative to the total number
of detected edges. This highlights connections between nodes that
are extreme relative to the baseline period: the p-values for the test
statistics need to be very small in order to be counted as edges.
This approach puts more interpretative power on the existence of
edges than their absence: if an edge exists in an inferred network
it reflects a strong difference between trial and baseline coupling,
but if an edge does not exist there might be a difference that was
not strong enough to be classified as significant. This could cause
problems in situations where the power of the statistical test is
different for different pairs of electrodes, for example if the SNR
varies considerably across the set of electrodes. In this case, the
variance of the test statistics may be higher in the baseline condi-
tion for pairs of electrodes with low SNR, making it more difficult
for the trial period coupling to achieve low p-values compared to
pairs of electrodes with high SNR. This could ultimately lead to
increased false negative edges in the network for edges involving
electrodes with relatively low SNR. Hence it is important to take
caution in the interpretation of networks in the context of vary-
ing SNR, especially with respect to absent edges, since the FDR
procedure does not control for false negatives. Note also that the
FDR procedure assumes independence between the component
tests (Benjamini and Hochberg, 1995). It is possible that a net-
work structure introduces dependencies between the test statistics
calculated for each potential edge. If this is the case, a corrected
FDR procedure or another control for multiple comparisons may
be more appropriate (Dudoit and Laan, 2008).

Additionally, we note that the uncertainty measures we
describe are to be interpreted in terms of comparisons between
a single epoch and a baseline period, not in terms of comparisons
between epochs. Care should be taken in claiming significance
in changing network structure through multiple time epochs.
The fact that one epoch shows a significant difference in net-
work structure from baseline while another epoch shows none,
does not necessarily indicate a significant difference in network
structure between epochs. In order to quantify the significance of
changes across epochs, similar methods can be developed to those
discussed here.
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As high density multi-sensor data becomes increasingly com-
mon, techniques to characterize these data—and notions of
uncertainty in these characterizations—become essential. In this
paper we described a general framework for the inference of func-
tional networks from task-related, multi-sensor data. We pro-
posed a principled approach for assessing uncertainty in network
edges and aggregate network measures, as well as a technique
to aggregate sensor activity and improve detection of network
structure. Within this framework, we made specific choices to
construct the functional networks. However, the framework is
general and adaptable to choices optimized to specific recording
modalities and research questions.
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APPENDIX
CONSTRUCTION OF SIMULATED DATA
The simulation consisted of 600 s of synthetic recordings from
nine sensors at a sampling frequency of 1200 Hz. The nine sen-
sors were split into three regions, consisting of three sensors each.
The first 400 s of the data were a “baseline period” containing no
trials, followed by 100 trials lasting 1 s each, separated by 1 s. The
total signal was a sum of four subcomponents: pink noise, white
noise, constant correlations, and trial correlations (Figure 1D).
The sensor-space and region-space connectivity networks existing
during the trials were the same for all simulations, consisting of
two different network topologies present for the first and second
halves of the trials, called the Before and After periods, respec-
tively, (Figure 1A). The magnitudes of the different components
and the strength of the correlations were manipulated in a series
of scenarios designed to test the effects of the SNR and constant
background correlations on the ability of our network analy-
sis methodology (described in Methods section Construction
of Functional Networks) to detect task-related changes in the
correlation structure.

While we intend to make the code available online, it will not
be posted before the publication.

Pink noise
Pink noise, P(t), was generated for each sensor by convolving
white noise with a Gaussian kernel of standard deviation 5 ms.
The spectrum of the resulting signal (Figure 1C, top) roughly
approximated the decrease in power with frequency commonly
observed in neuronal voltage recordings (Miller et al., 2009; He
et al., 2010). After filtering, the signal was normalized by the
standard deviation, resulting in a signal with unit variance.

White noise
The white noise component, W(t), for each sensor had
variance 0.1.

Constant correlations
Constant correlated structure was included by adding a single 2–
50 Hz signal lasting the entire duration of the recording, C(t), to
every sensor. Because the same signal was added to all sensors,
the network topology corresponding to this signal is a complete
graph, in which every node is connected to every other node.
In order to vary the strength of the constant correlations while
holding total variance and spectral characteristics constant, an
additional 2–50 Hz signal, B(t), uncorrelated between sensors,
was added to each sensor. Signals in the desired passband were
generated by filtering white noise using a zero-phase 4th order
Butterworth filter (Matlab filtfilt function). After filtering, the sig-
nals were normalized to have unit variance and multiplied by
a gain factor that varied by simulation (see Appendix section
Simulation Scenarios).

Trial correlations
Task-related correlation structure was introduced into each sen-
sor of the synthetic data in the 8–25 Hz frequency range in
order to introduce pre-defined network structures in the first
500 ms (“Before” task onset) and the second 500 ms (“After”
task onset) of the trials (Figure 1A). In the true Before network,

edges exist between sensors 1 and 9, 2 and 8, and 3 and 4. This
corresponds to a region-space network in which Region 1 (red)
is connected to both Region 2 (green) and Region 3 (blue). In
the true After network, the sensors in Region 1 (red nodes) are
completely connected (cyan edges), and Regions 2 (green nodes)
and 3 (blue nodes) have three pairs of connected sensors between
them (magenta, yellow, and green edges). The region topology
therefore contained only one edge, between Regions 2 and 3.

Figure 1B shows how the trial correlations between sensors
were introduced into the signal, using the After network to illus-
trate. The 8–25 Hz component was constructed to have constant
instantaneous variance during the entire dataset, switching from
uncorrelated 8–25 Hz noise outside of trials and transitioning to
correlated 8–25 Hz noise during trials. To achieve this, three sig-
nals were summed at each sensor: one uncorrelated signal lasting
the entire duration of the data that tapers away during the cor-
related portions of the trials, (Figure 1B, middle), one correlated
signal corresponding to the Before network that appears only dur-
ing the first half of the trials (not shown), and one correlated
signal corresponding to the After network that appears only dur-
ing the second half of the trials (Figure 1B, left). The signal added
to each sensor was chosen to introduce a fixed network topology
(the colored edges in Figure 1A, corresponding to colored traces
in Figure 1B) of the correlations during the trials that would not
exist in the baseline period.

The window functions governing the transition between
uncorrelated activity and correlated activity (WU(t) and WT(t),
respectively; Figure 1B, top) were chosen so that the instanta-
neous variance of the signal (Figure 1B, bottom) would stay
constant during trials. In particular, the correlated signal was win-
dowed by the square root of a Gaussian kernel with σ = 50 ms and
μ = 250 ms:

WT(t) =
√

1

σ
√

2π
e
−(t−μ)2

2σ2

The uncorrelated signal was windowed by:

WU(t) =
√

1− 1

σ
√

2π
e
−(t−μ)2

2σ2

These choices resulted in correlated and uncorrelated signals,
T(t) and U(t), respectively, having instantaneous variances that
evolve in time according to a Gaussian profile and one minus that
Gaussian profile:

Var(T(t)) = 1

σ
√

2π
e
−(t−μ)2

2σ2

Var(U(t)) = 1− 1

σ
√

2π
e
−(t−μ)2

2σ2 .

Hence the combined signals had unit variance (Figure 1B, bot-
tom). The combined signal was then multiplied by a gain factor
that varied by simulation (see section Simulation Scenarios). In
the resulting signal, the total variance of the correlated signal,
T(t), over the entire trial (for electrodes with at least one edge
in both the before and after networks) was about one quarter of
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the total variance, the other three quarters of the total variance
being contributed by U(t).

Simulation scenarios
A series of simulation scenarios were constructed in order to
investigate the performance of the network analysis techniques
under different conditions related to the SNR and to the ratio of
trial correlations to constant correlations.

The first set of simulations tested the effects of SNR on inferred
trial networks in the absence of constant correlations (Table A1,
SNR simulations). SNR was defined as:

SNR = Var(T)

Var(U)+ Var(C)+ Var(B)+ Var(W)+ Var(P)

where the variances are calculated over time during the trials
(both the Before epoch and the After epoch), in which the trial
correlation component T(t) has nonzero variance. Note that in
all simulations, the white noise component W(t) had a variance
of 0.1 and the pink noise component P(t) had a variance of 1.
In these simulations, C(t) and B(t) were set to zero and the gain
on the 8–25 Hz component (T(t)+ U(t)) was varied to achieve
different SNR values (Table A1).

The second set of simulations tested the effects of constant
background correlations on the inferred trial networks (Table A1,
“Ratio” simulations). By using the same gains for the 8–25 Hz
component, T(t)+ U(t), and the 2–50 Hz component, C(t)+
B(t), for all of these simulations, the SNR was held the same. What
varied in these simulations was the relative variances of C(t) and
B(t). This resulted in simulations in which the ratio of the vari-
ance of the trial correlations T(t) and constant correlations C(t)
varied:

CorrelationRatio = Var(T)

Var(C)

where, as above, the variances are calculated over time during the
trials. Note that Var(T) is about one quarter of the total variance
of the 8–25 Hz component.

Finally, simulations were constructed for two example scenar-
ios to illustrate different features of the analysis. These examples
are described in more detail in the Results (section Canonical
Correlation Outperforms Signal Averaging Within ROIs).

SPARSITY OF NETWORKS AND NULL DISTRIBUTION RESOLUTION
EFFECTS
The smallest possible p-value in the described bootstrap proce-
dure, p(1), is bounded below by the number of bootstrap samples
used to calculate the null distribution, here 1/1000 for the sim-
ulated data. In a typical network, there may be many potential
edges whose test statistics fall above the highest sample in their
respective empirical null distributions, leading to a set of p-values
p(1), . . . , p(kmin) equal to 1/1000. If the total number of these, kmin,
satisfies

p(kmin) = 1

1000
≤ qkmin

NMC

then all of the tests 1,. . . , kmin will be considered significant. If
p(kmin) > qkmin/NMC , all of the tests will be considered insignifi-
cant and the network will be reported as empty. This character-
istic, resulting from the interaction of the FDR procedure with
empirical estimation of the null distribution, imposes a lower
bound on the sparsity of networks that can be detected: anything
below this sparsity level will be reported as an empty network.
Analytically, the smallest number of edges that can be detected is:

NMC

qNbs

where Nbs is the number of bootstrap samples used for the estima-
tion of the null distributions. Note that this formula also depends
on NMC , the number of potential edges in the network, which
scales with the square of the number of electrodes. Hence this
issue becomes more serious as the size of the networks increases.

There are a variety of possible ways to deal with this issue. The
first is to reduce the number of nodes in the networks (hence
reducing the number of possible edges) by defining the networks
on a larger spatial scale, for example by using the ROI-based
analysis using canonical correlation described here. With fewer
possible edges, it can become computationally tractable to use
enough bootstrap samples to detect even a single edge. When
reducing the number of nodes is not possible, a second option is
to increase the number of bootstrap samples so that the minimum
number of detectable edges is acceptably small. This is a rea-
sonable first approach, since in many applications the networks
are sufficiently dense to exceed the threshold. If the resulting
inferred networks are not empty, no further analysis is needed.
If the networks are empty, however, it could either be because
there really is no coupling or because the number of true edges
is smaller than the detectable amount. In this case, two other
options are available: (1) estimate the null distributions paramet-
rically, or (2) estimate the tails of the null distributions above
the highest bootstrap sample using extreme value theory. In the
case of correlations, the Fisher transform of the correlation is well
approximated by a Gaussian distribution (Fisher, 1915), so the
parametric approach is possible. When the sampling distribution
of the test statistic is not well behaved, an approach to estimat-
ing the p-values only in the tails of the distribution based on
extreme value theory may be used (Hill, 1975; Pickands, 1975;
Smith, 1987).

For the experimental data used here, we increased the number
of bootstrap samples in order to detect networks with very few
edges. Specifically, the correlation networks had 90 nodes and we
used 20025 bootstrap samples, so the smallest number of edges
that could be detected was

90 ∗ 89/2

0.05 ∗ 20025
= 4

For the canonical correlation networks, we had 25 regions and
used 6000 bootstrap samples, so that we could detect a network
with a single edge. Note that by reducing the number of nodes,
canonical correlation networks require many fewer bootstrap
samples.
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Table A1 | Parameters for simulation scenarios.

Simulation 8–25 Hz variance 2–50 Hz variance SNR Correlation ratio Results figures

Uncorrelated Correlated

SNR 1 0.00 0 0 0.00 . Figures 3, 4, 7

SNR 2 0.26 0 0 0.05 . Figures 3, 4, 7

SNR 3 0.63 0 0 0.10 . Figures 3, 4, 7

SNR 4 1.20 0 0 0.15 . Figures 3, 4, 7

Ratio 1 1.00 0 0.5 0.11 0.5 Figures 5, 6, 8

Ratio 2 1.00 0.25 0.25 0.11 1.0 Figures 5, 6, 8

Ratio 3 1.00 0.37 0.13 0.11 2.0 Figures 5, 6, 8

Example 1 1.00 0 0 0.14 . Figure 10

Example 2A 1.00 0 0 0.14 . Figure 11A

Example 2B 1.00 0 0 0.14 . Figure 11B

Here we list the settings utilized in the simulation scenarios considered in Results. Figures illustrating the inferred functional networks for each scenario are listed

in the last column.

NETWORK INFERENCE ALGORITHM STRUCTURE INCLUDING UNCERTAINTY ESTIMATION
In this section we provide a description in pseudo-code of the uncertainty estimation algorithm. Symbols are defined at the end of this
section.
Network estimation with uncertainty:

- Estimate the null distribution from baseline data (the same null distribution is used for the observed network and the
bootstrapped networks):

- For j = 1 : Nbs,

- Ibaseline ← a set of L indices chosen uniformly at random (with replacement) from 1 : K
- Samplebs ← the data for baseline intervals corresponding to Ibaseline : (T × N × L)

- x̂bs
(
j, :, :)← (1× N × N) or (1× R× R): the test statistic at each edge calculated from Samplebs

- End

- Resample trials to compute bootstrap networks and network measures

- For i = 1 : Nus ,

- Select a sample of trials over which to compute a surrogate network:

- Ius ← a set of L indices chosen uniformly at random (with replacement) from 1 : L
- SampleI ← (E × T × N × L): the data for trials corresponding to Ius

- Calculate the true x̂ for the sample:

- x̂i ← (E × N × N) or (E × R× R): the test statistic at each edge calculated from SampleI for each epoch

- Compare x̂i , (E × N × N) or (E × R× R), at each edge to the empirical null distribution given by x̂bs ,
(Nbs × N × N) or (Nbs × R× R):

- For epoch e = 1 : E,

- For node n1 = 1 : N (or 1 : R)

- For node n2 = n1 + 1 : N (or n1 + 1 : R)

- p (e, n1, n2 )← #
(
x̂bs (:, n1, n2 ) > x̂i (e, n1, n2 )

)
Nbs

, where # denotes a count of the number of elements

satisfying the expression in parentheses

- If p (e, n1, n2 ) == 0 then p (e, n1, n2 )1/Nbs

- End

- End

- End

- Use FDR procedure to identify significant edges:

- For epoch e = 1 : E,
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- p(.) ← (1× NMC ): Sorted p for the epoch e, for all edges

- k← the highest k such that p(k) ≤ qk
NMC

- threshold ← p(k)

- Net (i, e, :, :)← (1× 1× N × N) or (1× 1× R× R): p(e, :, :) ≤ threshold (binary network consisting of all edges
with a p-values less than threshold)

- End

- Calculate aggregate network statistics:

- For epoch e = 1 : E,

- Density(i, e) ← # edges in Net(i,e,:,:)
NMC

- End

- End

- Return Net (Nus × E × N × N) and Density (Nus × E)

- To calculate the probability of an edge for each epoch and edge:

- For epoch e = 1 : E,

- For node n1 = 1 : N (or 1 : R)

- For node n2 = n1 + 1 : N (or n1 + 1 : R)

- Pedge (e, n1, n2 ) ← # edges in Net(:,e,n1,n2 )

Nus

- End

- End

- End

- To calculate alpha-level confidence intervals on the density for each epoch:

- For epoch e = 1 : E,

- ObservedDensity(e)← the density of the observed network (calculated using all trials)

- StandardError(e)← the standard error of Density (:, e)

- LowerBound(e)← ObservedDensity(e)− 1.96 ∗ StandardError(e)

- UpperBound(e) ← ObservedDensity(e) + 1.96∗StandardError(e)

- End

Constants:

Nus : the number of bootstrap samples for uncertainty estimation

E: the number of epochs

T: the number of time points in each epoch

N: the number of sensors

R: the number of regions

L: the number of trials

K: the number of baseline intervals (K > L)

Nbs : the number of bootstrap samples for null distribution estimation

q: The FDR threshold for the number of false positives (here, 0.05)

NMC : the number of comparisons performed for each network, equal to the number of possible edges, N∗ (N − 1) /2 or R∗ (R− 1) /2

α: the desired type-I error rate for confidence intervals on aggregate statistic.
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