10 research outputs found

    Understanding the Influence of Cultural Dimensions on the Interpretative Ability of People to Infer Personality from the Avatars: Evidence from Cultural Dimensions of Greece, Pakistan, Russia, and Singapore

    Get PDF
    Avatar is a customized cartoon representation of the self and many people develop inferences about individuals’ online representations through their avatar’s facial appearance. Research has shown that avatars can signal information about the personality and social desires of a person [1]. Nonetheless, customizing an avatar enables control of self-representation that could potentially moderate the true personality traits of an individual. The customized facial appearance of the avatar affects people’s ability to draw expressions [2], whereas, several cultural dimensions affect the interpretative ability of the people to construct personality inferences from the facial appearance of avatars. We found a significant relationship between neuroticism to uncertainty avoidance and masculinity, whereas, negative relationships were found between extraversion and masculinity, and agreeableness to uncertainty avoidance. The study uses three-dimensional avatars to capture detailed features and expressions on avatar faces

    ADRA1A-Gα<sub>q</sub> signalling potentiates adipocyte thermogenesis through CKB and TNAP

    Get PDF
    Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis(1). Aside from cAMP signalling downstream of β-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α(1)-adrenergic receptor (AR) and β(3)-AR signalling induces the expression of thermogenic genes of the futile creatine cycle(2,3), and that early B cell factors, oestrogen-related receptors and PGC1α are required for this response in vivo. NA triggers physical and functional coupling between the α(1)-AR subtype (ADRA1A) and Gα(q) to promote adipocyte thermogenesis in a manner that is dependent on the effector proteins of the futile creatine cycle, creatine kinase B and tissue-non-specific alkaline phosphatase. Combined Gα(q) and Gα(s) signalling selectively in adipocytes promotes a continual rise in whole-body energy expenditure, and creatine kinase B is required for this effect. Thus, the ADRA1A–Gα(q)–futile creatine cycle axis is a key regulator of facultative and adaptive thermogenesis

    Vertical Profiling of Fresh Biomass Burning Aerosol Optical Properties over the Greek Urban City of Ioannina, during the PANACEA Winter Campaign

    No full text
    Vertical profiling of aerosol particles was performed during the PANhellenic infrastructure for Atmospheric Composition and climatE chAnge (PANACEA) winter campaign (10 January 2020&ndash;7 February 2020) over the city of Ioannina, Greece (39.65&deg; N, 20.85&deg; E, 500 m a.s.l.). The middle-sized city of Ioannina suffers from wintertime air pollution episodes due to biomass burning (BB) domestic heating activities. The lidar technique was applied during the PANACEA winter campaign on Ioannina city, to fill the gap of knowledge of the spatio-temporal evolution of the vertical mixing of the particles occurring during these winter-time air pollution episodes. During this campaign the mobile single-wavelength (532 nm) depolarization Aerosol lIdAr System (AIAS) was used to measure the spatio-temporal evolution of the aerosols&rsquo; vertical profiles within the Planetary Boundary Layer (PBL) and the lower free troposphere (LFT; up to 4 km height a.s.l.). AIAS performed almost continuous lidar measurements from morning to late evening hours (typically from 07:00 to 19:00 UTC), under cloud-free conditions, to provide the vertical profiles of the aerosol backscatter coefficient (baer) and the particle linear depolarization ratio (PLDR), both at 532 nm. In this study we emphasized on the vertical profiling of very fresh (~hours) biomass burning (BB) particles originating from local domestic heating activities in the area. In total, 33 out of 34 aerosol layers in the lower free troposphere were characterized as fresh biomass burning ones of local origin, showing a mean particle linear depolarization value of 0.04 &plusmn; 0.02 with a range of 0.01 to 0.09 (532 nm) in a height region 1.21&ndash;2.23 km a.s.l. To corroborate our findings, we used in situ data, particulate matter (PM) concentrations (PM2.5) from a particulate sensor located close to our station, and the total black carbon (BC) concentrations along with the respective contribution of the fossil fuel (BCff) and biomass/wood burning (BCwb) from the Aethalometer. The PM2.5 mass concentrations ranged from 5.6 to 175.7 &mu;g/m3, while the wood burning emissions from residential heating were increasing during the evening hours, with decreasing temperatures. The BCwb concentrations ranged from 0.5 to 17.5 &mu;g/m3, with an extremely high mean contribution of BCwb equal to 85.4%, which in some cases during night-time reached up to 100% during the studied period

    Optical and Microphysical Properties of Aged Biomass Burning Aerosols and Mixtures, Based on 9-Year Multiwavelength Raman Lidar Observations in Athens, Greece

    No full text
    Mean optical and microphysical aerosol properties of long-range transported biomass burning (BB) particles and mixtures are presented from a 9-year (2011–2019) data set of multiwavelength Raman lidar data, obtained by the EOLE lidar over the city of Athens (37.58° N, 23.47° E), Greece. We studied 34 aerosol layers characterized as: (1) smoke; (2) smoke + continental polluted, and (3) smoke + mixed dust. We found, mainly, small-sized aerosols with mean backscatter-related (355 nm/532 nm, 532 nm/1064 nm) values and Ångström exponent (AE) values in the range 1.4–1.7. The lidar ratio (LR) value at 355 nm was found to be 57 ± 10 sr, 51 ± 5 sr, and 38 ± 9 sr for the aerosol categories (1), (2), and (3), respectively; while at 532 nm, we observed LR values of 73 ± 11 sr, 59 ± 10 sr, and 62 ± 12 for the same categories. Regarding the retrieved microphysical properties, the effective radius (reff) ranged from 0.24 ± 0.11 to 0.24 ± 0.14 μm for all aerosol categories, while the volume density (vd) ranged from 8.6 ± 3.2 to 20.7 ± 14.1 μm−3cm−3 with the higher values linked to aerosol categories (1) and (2); the real part of the refractive index (mR) ranged between 1.49 and 1.53, while for the imaginary part (mI), we found values within 0.0108 i and 0.0126 i. Finally, the single scattering albedo (SSA) of the propped particles varied from 0.915 to 0.936 at all three wavelengths (355–532–1064 nm). The novelty of this study is the provision of typical values of BB aerosol properties from the UV to the near IR, which can be used in forecasting the aerosol climatic effects in the European region

    Vertical Profiling of Fresh Biomass Burning Aerosol Optical Properties over the Greek Urban City of Ioannina, during the PANACEA Winter Campaign

    No full text
    Vertical profiling of aerosol particles was performed during the PANhellenic infrastructure for Atmospheric Composition and climatE chAnge (PANACEA) winter campaign (10 January 2020–7 February 2020) over the city of Ioannina, Greece (39.65° N, 20.85° E, 500 m a.s.l.). The middle-sized city of Ioannina suffers from wintertime air pollution episodes due to biomass burning (BB) domestic heating activities. The lidar technique was applied during the PANACEA winter campaign on Ioannina city, to fill the gap of knowledge of the spatio-temporal evolution of the vertical mixing of the particles occurring during these winter-time air pollution episodes. During this campaign the mobile single-wavelength (532 nm) depolarization Aerosol lIdAr System (AIAS) was used to measure the spatio-temporal evolution of the aerosols’ vertical profiles within the Planetary Boundary Layer (PBL) and the lower free troposphere (LFT; up to 4 km height a.s.l.). AIAS performed almost continuous lidar measurements from morning to late evening hours (typically from 07:00 to 19:00 UTC), under cloud-free conditions, to provide the vertical profiles of the aerosol backscatter coefficient (baer) and the particle linear depolarization ratio (PLDR), both at 532 nm. In this study we emphasized on the vertical profiling of very fresh (~hours) biomass burning (BB) particles originating from local domestic heating activities in the area. In total, 33 out of 34 aerosol layers in the lower free troposphere were characterized as fresh biomass burning ones of local origin, showing a mean particle linear depolarization value of 0.04 ± 0.02 with a range of 0.01 to 0.09 (532 nm) in a height region 1.21–2.23 km a.s.l. To corroborate our findings, we used in situ data, particulate matter (PM) concentrations (PM2.5) from a particulate sensor located close to our station, and the total black carbon (BC) concentrations along with the respective contribution of the fossil fuel (BCff) and biomass/wood burning (BCwb) from the Aethalometer. The PM2.5 mass concentrations ranged from 5.6 to 175.7 μg/m3, while the wood burning emissions from residential heating were increasing during the evening hours, with decreasing temperatures. The BCwb concentrations ranged from 0.5 to 17.5 μg/m3, with an extremely high mean contribution of BCwb equal to 85.4%, which in some cases during night-time reached up to 100% during the studied period

    Radiative Effect and Mixing Processes of a Long-Lasting Dust Event over Athens, Greece, during the COVID-19 Period

    No full text
    We report on a long-lasting (10 days) Saharan dust event affecting large sections of South-Eastern Europe by using a synergy of lidar, satellite, in-situ observations and model simulations over Athens, Greece. The dust measurements (11–20 May 2020), performed during the confinement period due to the COVID-19 pandemic, revealed interesting features of the aerosol dust properties in the absence of important air pollution sources over the European continent. During the event, moderate aerosol optical depth (AOD) values (0.3–0.4) were observed inside the dust layer by the ground-based lidar measurements (at 532 nm). Vertical profiles of the lidar ratio and the particle linear depolarization ratio (at 355 nm) showed mean layer values of the order of 47 ± 9 sr and 28 ± 5%, respectively, revealing the coarse non-spherical mode of the probed plume. The values reported here are very close to pure dust measurements performed during dedicated campaigns in the African continent. By utilizing Libradtran simulations for two scenarios (one for typical midlatitude atmospheric conditions and one having reduced atmospheric pollutants due to COVID-19 restrictions, both affected by a free tropospheric dust layer), we revealed negligible differences in terms of radiative effect, of the order of +2.6% (SWBOA, cooling behavior) and +1.9% (LWBOA, heating behavior). Moreover, the net heating rate (HR) at the bottom of the atmosphere (BOA) was equal to +0.156 K/d and equal to +2.543 K/d within 1–6 km due to the presence of the dust layer at that height. On the contrary, the reduction in atmospheric pollutants could lead to a negative HR (−0.036 K/d) at the bottom of the atmosphere (BOA) if dust aerosols were absent, while typical atmospheric conditions are estimated to have an almost zero net HR value (+0.006 K/d). The NMMB-BSC forecast model provided the dust mass concentration over Athens, while the air mass advection from the African to the European continent was simulated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model

    Radiative Effect and Mixing Processes of a Long-Lasting Dust Event over Athens, Greece, during the COVID-19 Period

    No full text
    We report on a long-lasting (10 days) Saharan dust event affecting large sections of South-Eastern Europe by using a synergy of lidar, satellite, in-situ observations and model simulations over Athens, Greece. The dust measurements (11–20 May 2020), performed during the confinement period due to the COVID-19 pandemic, revealed interesting features of the aerosol dust properties in the absence of important air pollution sources over the European continent. During the event, moderate aerosol optical depth (AOD) values (0.3–0.4) were observed inside the dust layer by the ground-based lidar measurements (at 532 nm). Vertical profiles of the lidar ratio and the particle linear depolarization ratio (at 355 nm) showed mean layer values of the order of 47 ± 9 sr and 28 ± 5%, respectively, revealing the coarse non-spherical mode of the probed plume. The values reported here are very close to pure dust measurements performed during dedicated campaigns in the African continent. By utilizing Libradtran simulations for two scenarios (one for typical midlatitude atmospheric conditions and one having reduced atmospheric pollutants due to COVID-19 restrictions, both affected by a free tropospheric dust layer), we revealed negligible differences in terms of radiative effect, of the order of +2.6% (SWBOA, cooling behavior) and +1.9% (LWBOA, heating behavior). Moreover, the net heating rate (HR) at the bottom of the atmosphere (BOA) was equal to +0.156 K/d and equal to +2.543 K/d within 1–6 km due to the presence of the dust layer at that height. On the contrary, the reduction in atmospheric pollutants could lead to a negative HR (−0.036 K/d) at the bottom of the atmosphere (BOA) if dust aerosols were absent, while typical atmospheric conditions are estimated to have an almost zero net HR value (+0.006 K/d). The NMMB-BSC forecast model provided the dust mass concentration over Athens, while the air mass advection from the African to the European continent was simulated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model

    Fieldwork Coastal Engineering 2017: CIE5318 Fieldwork Hydraulic Engineering

    No full text
    Since 2003 there is a cooperation between the Hydraulic Engineering department of Delft University of Technology and Bulgarian universities. The cooperation focusses on exchange of knowledge and the development of the coast in the area of Varna. Dutch and Bulgarian students get the possibility to gain experience in data collecting, processing and interpreting. Repeating this fieldwork every year in the same area will provide an overview of the coastal development in the Varna area. The students will act as consultants for local hotel owners at the Varna coast. Their work consists of measuring hydraulic aspects in the project area and making a rehabilitation plan for the St. Elias Marina. Data collection consist of inventory material near site, beach measurements, wave measurements, profile measurements, quarry analysis and a bathymetric survey. The rehabilitation plan contains the development of sub-areas in the St. Elias Marina like the peninsula, north beach, south beach and the breakwater.Dataset 4TU.Researchdata: https://doi.org/10.4121/uuid:dbacfbb4-ede7-4366-9c5b-10155b02cd1cCivil Engineering | Hydraulic Engineering | Coastal Engineerin

    ADRA1A-Gα signalling potentiates adipocyte thermogenesis through CKB and TNAP

    No full text
    Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis. Aside from cAMP signalling downstream of β-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α-adrenergic receptor (AR) and β-AR signalling induces the expression of thermogenic genes of the futile creatine cycle, and that early B cell factors, oestrogen-related receptors and PGC1α are required for this response in vivo. NA triggers physical and functional coupling between the α-AR subtype (ADRA1A) and Gα to promote adipocyte thermogenesis in a manner that is dependent on the effector proteins of the futile creatine cycle, creatine kinase B and tissue-non-specific alkaline phosphatase. Combined Gα and Gα signalling selectively in adipocytes promotes a continual rise in whole-body energy expenditure, and creatine kinase B is required for this effect. Thus, the ADRA1A-Gα-futile creatine cycle axis is a key regulator of facultative and adaptive thermogenesis
    corecore