98 research outputs found

    Do attributes in the physical environment influence children's physical activity? A review of the literature

    Get PDF
    BACKGROUND: Many youth today are physically inactive. Recent attention linking the physical or built environment to physical activity in adults suggests an investigation into the relationship between the built environment and physical activity in children could guide appropriate intervention strategies. METHOD: Thirty three quantitative studies that assessed associations between the physical environment (perceived or objectively measured) and physical activity among children (ages 3 to 18-years) and fulfilled selection criteria were reviewed. Findings were categorized and discussed according to three dimensions of the physical environment including recreational infrastructure, transport infrastructure, and local conditions. RESULTS: Results across the various studies showed that children's participation in physical activity is positively associated with publicly provided recreational infrastructure (access to recreational facilities and schools) and transport infrastructure (presence of sidewalks and controlled intersections, access to destinations and public transportation). At the same time, transport infrastructure (number of roads to cross and traffic density/speed) and local conditions (crime, area deprivation) are negatively associated with children's participation in physical activity. CONCLUSION: Results highlight links between the physical environment and children's physical activity. Additional research using a transdisciplinary approach and assessing moderating and mediating variables is necessary to appropriately inform policy efforts

    A novel flexible framework with automatic feature correspondence optimization for nonrigid registration in radiotherapy

    Get PDF
    Technical improvements in planning and dose delivery and in verification of patient positioning have substantially widened the therapeutic window for radiation treatment of cancer. However, changes in patient anatomy during the treatment limit the exploitation of these new techniques. To further improve radiation treatments, anatomical changes need to be modeled and accounted for. Non-rigid registration can be used for this purpose. This paper describes the design, the implementation and the validation of a new framework for non-rigid registration for radiotherapy applications. The core of this framework is an improved version of the Thin Plate Splines Robust Point Matching (TPS-RPM) algorithm. The TPS-RPM algorithm estimates a global correspondence and a transformation between the points that represent organs of interest belonging to two image sets. However, the algorithm does not allow for the inclusion of prior knowledge on the correspondence of subset of points and therefore, it can lead to inconsistent anatomical solutions. In this paper TPS-RPM was improved by employing a novel correspondence filter that supports simultaneous registration of multiple structures. The improved method allows for coherent organ registration and for the inclusion of user defined landmarks, lines and surfaces inside and outside of structures of interest. A procedure to generate control points form segmented organs is described. The framework parameters r and ?, which control the number of points and the non-rigidness of the transformation respectively, were optimized for three sites with different degrees of deformation: head and neck, prostate and cervix, using two cases per site. For the head and neck cases, the salivary glands were manually contoured on CT-scans, for the prostate cases the prostate and the vesicles, and for the cervix cases the cervix-uterus, the bladder and the rectum. The transformation error obtained using the best set of parameters was below 1 mm for all the studied cases. The length of the deformation vectors were on average (± 1 standard deviation) 5.8 ± 2.5 and 2.6 ± 1.1 mm for the head and neck cases, 7.2 ± 4.5 and 8.6 ± 1.9 mm for the prostate cases, and 19.0 ± 11.6 and 14.5 ± 9.3 mm for the cervix cases. Distinguishable anatomical features were identified for each case, and were used to validate the registration by calculating residual distances after transformation: 1.5 ± 0.8, 2.3 ± 1.0 and 6.3 ± 2.9 mm for the head and neck, prostate and cervix sites respectively. Finally, we demonstrated how the inclusion of these anatomical features in the registration process reduced the residual distances to 0.8 ± 0.5, 0.6 ± 0.5 and 1.3 ± 0.7 mm for the head and neck, prostate and cervix sites respectively. The inclusion of additional anatomical features produced more anatomically coherent transformations without compromising the transformation error. We concluded that the presented non-rigid registration framework is a powerful tool to simultaneously register multiple segmented organs with very different complexity

    The infant feeding activity and nutrition trial (INFANT) an early intervention to prevent childhood obesity : cluster-randomised controlled trial

    Get PDF
    Background : Multiple factors combine to support a compelling case for interventions that target the development of obesity-promoting behaviours (poor diet, low physical activity and high sedentary behaviour) from their inception. These factors include the rapidly increasing prevalence of fatness throughout childhood, the instigation of obesity-promoting behaviours in infancy, and the tracking of these behaviours from childhood through to adolescence and adulthood. The Infant Feeding Activity and Nutrition Trial (INFANT) aims to determine the effectiveness of an early childhood obesity prevention intervention delivered to first-time parents. The intervention, conducted with parents over the infant\u27s first 18 months of life, will use existing social networks (first-time parent\u27s groups) and an anticipatory guidance framework focusing on parenting skills which support the development of positive diet and physical activity behaviours, and reduced sedentary behaviours in infancy.Methods/Design : This cluster-randomised controlled trial, with first-time parent groups as the unit of randomisation, will be conducted with a sample of 600 first-time parents and their newborn children who attend the first-time parents\u27 group at Maternal and Child Health Centres. Using a two-stage sampling process, local government areas in Victoria, Australia will be randomly selected at the first stage. At the second stage, a proportional sample of first-time parent groups within selected local government areas will be randomly selected and invited to participate. Informed consent will be obtained and groups will then be randomly allocated to the intervention or control group.Discussion : The early years hold promise as a time in which obesity prevention may be most effective. To our knowledge this will be the first randomised trial internationally to demonstrate whether an early health promotion program delivered to first-time parents in their existing social groups promotes healthy eating, physical activity and reduced sedentary behaviours. If proven to be effective, INFANT may protect children from the development of obesity and its associated social and economic costs.<br /

    Automatic Acquisition and Initialization of Articulated Models

    No full text
    Tracking, classification and visual analysis of articulated motion is challenging due to the difficulties involved in separating noise and variabilities caused by appearance, size and view point fluctuations from task-relevant variations. By incorporating powerful domain knowledge, model based approaches are able to overcome these problem to a great extent and are actively explored by many researchers. However, model acquisition, initialization and adaptation are still relatively under-investigated problems, especially for the case of single camera systems
    • …
    corecore