268 research outputs found

    QuAnt: Quantum Annealing with Learnt Couplings

    Get PDF
    Modern quantum annealers can find high-quality solutions to combinatorialoptimisation objectives given as quadratic unconstrained binary optimisation(QUBO) problems. Unfortunately, obtaining suitable QUBO forms in computervision remains challenging and currently requires problem-specific analyticalderivations. Moreover, such explicit formulations impose tangible constraintson solution encodings. In stark contrast to prior work, this paper proposes tolearn QUBO forms from data through gradient backpropagation instead of derivingthem. As a result, the solution encodings can be chosen flexibly and compactly.Furthermore, our methodology is general and virtually independent of thespecifics of the target problem type. We demonstrate the advantages of learntQUBOs on the diverse problem types of graph matching, 2D point cloud alignmentand 3D rotation estimation. Our results are competitive with the previousquantum state of the art while requiring much fewer logical and physicalqubits, enabling our method to scale to larger problems. The code and the newdataset will be open-sourced.<br

    Using Lightweight Activity Diagrams for Modeling and Generation of Web Information Systems

    Full text link
    The development process of web information systems nowadays improved a lot regarding effectiveness and tool support, but still contains many redundant steps for similar tasks. In order to overcome this, we use a model-driven approach to specify a web information system in an agile way and generate a full- edged and runnable application from a set of models. The covered aspects of the system comprise data structure, page structure including view on data, page- and workflow within the system as well as overall application structure and user rights management. Appropriate tooling allows transforming these models to complete systems and thus gives us opportunity for a lightweight development process based on models. In this paper, we describe how we approach the page- and workflow aspect by using activity diagrams as part of the agile modeling approach MontiWIS. We give an overview of the defined syntax, describe the supported forms of action contents and finally explain how the behavior is realized in the generated application.Comment: 12 pages, 6 figure

    Search for sterile neutrino mixing in the MINOS long-baseline experiment

    Get PDF
    A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×1020 protons on target in which neutrinos of energies between ~500¿¿MeV and 120 GeV are produced predominantly as ¿µ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ¿µ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles ¿24 and ¿34 are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime t3/m3&gt;2.1×10-12¿¿s/eV at 90% C.L

    Neutrino and Antineutrino Inclusive Charged-current Cross Section Measurements with the MINOS Near Detector

    Get PDF
    The energy dependence of the neutrino-iron and antineutrino-iron inclusive charged-current cross sections and their ratio have been measured using a high-statistics sample with the MINOS Near Detector exposed to the NuMI beam from the Main Injector at Fermilab. Neutrino and antineutrino fluxes were determined using a low hadronic energy subsample of charged-current events. We report measurements of neutrino-Fe (antineutrinoFe) cross section in the energy range 3-50 GeV (5-50 GeV) with precision of 2-8% (3-9%) and their ratio which is measured with precision 2-8%. The data set spans the region from low energy, where accurate measurements are sparse, up to the high-energy scaling region where the cross section is well understood.Comment: accepted by PR
    corecore