5 research outputs found

    Frequent copy number gains of SLC2A3 and ETV1 in testicular embryonal carcinomas

    Get PDF
    Testicular germ cell tumours (TGCTs) appear as different histological subtypes or mixtures of these. They show similar, multiple DNA copy number changes, where gain of 12p is pathognomonic. However, few high-resolution analyses have been performed and focal DNA copy number changes with corresponding candidate target genes remain poorly described for individual subtypes. We present the first high-resolution DNA copy number aberration (CNA) analysis on the subtype embryonal carcinomas (ECs), including 13 primary ECs and 5 EC cell lines. We identified recurrent gains and losses and allele-specific CNAs. Within these regions, we nominate 30 genes that may be of interest to the EC subtype. By in silico analysis of data from 150 TGCTs from The Cancer Genome Atlas (TCGA), we further investigated CNAs, RNA expression, somatic mutations and fusion transcripts of these genes. Among primary ECs, ploidy ranged between 2.3 and 5.0, and the most common aberrations were DNA copy number gains at chromosome (arm) 7, 8, 12p, and 17, losses at 4, 10, 11, and 18, replicating known TGCT genome characteristics. Gain of whole or parts of 12p was found in all samples, including a highly amplified 100 kbp segment at 12p13.31, containing SLC2A3. Gain at 7p21, encompassing ETV1, was the second most frequent aberration. In conclusion, we present novel CNAs and the genes located within these regions, where the copy number gain of SLC2A3 and ETV1 are of interest, and which copy number levels also correlate with expression in TGCTs

    Hypoxia-inducible Factor-1α mRNA Contains an Internal Ribosome Entry Site That Allows Efficient Translation during Normoxia and Hypoxia

    No full text
    HIF-1α is the regulated subunit of the HIF-1 transcription factor, which induces transcription of a number of genes involved in the cellular response to hypoxia. The HIF-1α protein is rapidly degraded in cells supplied with adequate oxygen but is stabilized in hypoxic cells. Using polysome profile analysis, we found that translation of HIF-1α mRNA in NIH3T3 cells is spared the general reduction in translation rate that occurs during hypoxia. To assess whether the 5′UTR of the HIF-1α mRNA contains an internal ribosome entry site (IRES), we constructed a dicistronic reporter with the HIF-1α 5′UTR inserted between two reporter coding regions. We found that the HIF-1α 5′UTR promoted translation of the downstream reporter, indicating the presence of an IRES. The IRES had activity comparable to that of the well-characterized c-myc IRES. IRES activity was not affected by hypoxic conditions that caused a reduction in cap-dependent translation, and IRES activity was less affected by serum-starvation than was cap-dependent translation. These data indicate that the presence of an IRES in the HIF-1α 5′UTR allows translation to be maintained under conditions that are inhibitory to cap-dependent translation
    corecore