45 research outputs found

    RoboterunterstĂĽtzte fokussierte Ultraschalltherapie unter FĂĽhrung der Magnetresonanztomographie

    Get PDF
    Die fokussierte Ultraschall-(US)-Therapie (FUS) ist ein nicht-invasives Thermotherapieverfahren, bei dem Gewebe präzise zerstört wird. Zur Überwachung von FUS-Eingriffen wird derzeit die Magnetresonanz-(MR)-tomographie eingesetzt, da sie die Messung der induzierten Temperaturänderungen erlaubt. In dieser Arbeit wurde ein neues System für die MR-geführte FUS-Therapie (MRgFUS) entwickelt, das ein robotisches Assistenzsystem mit einem speziellen FUS Applikator kombiniert. Der Applikator mit integrierter FUS-Quelle wird für die Anwendung frei von oben auf die Haut aufgesetzt. Außerdem wurde er mit einer Hochfrequenzspule ausgestattet, um einen bestmöglichen MR-Signalempfang zu gewährleisten. Das kombinierte System wurde in Phantom- und Tierexperimenten evaluiert, wobei sich eine zu bestehenden MRgFUS-Systemen vergleichbare Zielgenauigkeit von 2-3 mm zeigte. Im Gegensatz zu existierenden Systemen sind allerdings mit dem vorgestellten System neuartige flexiblere Zugangswege für die MRgFUS-Behandlung am Patienten realisierbar. Für die optimierte Überwachung einer MRgFUS-Behandlung wurde im zweiten Teil der Arbeit eine neue MR-Temperaturbildgebungstechnik (Crushed Rephased Orthogonal Slice Selection, CROSS) basierend auf der Temperaturabhängigkeit der Protonresonanzfrequenz (PRF) implementiert. Konventionelle Messtechniken für die PRF-Thermometrie weisen erhebliche Totzeiten auf. Diese Totzeiten wurden genutzt, um durch eine Verschachtelung der Bildaufnahme simultan zwei orthogonale Bildschichten aufzunehmen. Mit Simulationen und Vergleichsmessungen wurde die generelle Funktionalität der CROSS-Technik demonstriert. Im Tierversuch konnten mit der CROSS-Sequenz Temperaturänderungen einer FUS-Behandlung mit einer Genauigkeit von 4 K detektiert werden. Die CROSS-Technik erreicht hierbei eine zeitliche Verbesserung von 40 % gegenüber konventionellen Techniken und gestattet zusätzlich eine Beobachtung des Temperaturfokus simultan in drei Raumrichtungen

    A computational model of rabbit geometry and ECG: Optimizing ventricular activation sequence and APD distribution

    Get PDF
    Computational modeling of electrophysiological properties of the rabbit heart is a commonly used way to enhance and/or complement findings from classic lab work on single cell or tissue levels. Yet, thus far, there was no possibility to extend the scope to include the resulting body surface potentials as a way of validation or to investigate the effect of certain pathologies. Based on CT imaging, we developed the first openly available computational geometrical model not only of the whole heart but also the complete torso of the rabbit. Additionally, we fabricated a 32-lead ECG-vest to record body surface potential signals of the aforementioned rabbit. Based on the developed geometrical model and the measured signals, we then optimized the activation sequence of the ventricles, recreating the functionality of the Purkinje network, and we investigated different apico-basal and transmural gradients in action potential duration. Optimization of the activation sequence resulted in an average root mean square error between measured and simulated signal of 0.074 mV/ms for all leads. The best-fit T-Wave, compared to measured data (0.038 mV/ms), resulted from incorporating an action potential duration gradient from base to apex with a respective shortening of 20 ms and a transmural gradient with a shortening of 15 ms from endocardium to epicardium. By making our model and measured data openly available, we hope to give other researchers the opportunity to verify their research, as well as to create the possibility to investigate the impact of electrophysiological alterations on body surface signals for translational research

    A study of Docetaxel-induced effects in MCF-7 cells by means of Raman microspectroscopy

    Get PDF
    Chemotherapies feature a low success rate of about 25%, and therefore, the choice of the most effective cytostatic drug for the individual patient and monitoring the efficiency of an ongoing chemotherapy are important steps towards personalized therapy. Thereby, an objective method able to differentiate between treated and untreated cancer cells would be essential. In this study, we provide molecular insights into Docetaxel-induced effects in MCF-7 cells, as a model system for adenocarcinoma, by means of Raman microspectroscopy combined with powerful chemometric methods. The analysis of the Raman data is divided into two steps. In the first part, the morphology of cell organelles, e.g. the cell nucleus has been visualized by analysing the Raman spectra with k-means cluster analysis and artificial neural networks and compared to the histopathologic gold standard method hematoxylin and eosin staining. This comparison showed that Raman microscopy is capable of displaying the cell morphology; however, this is in contrast to hematoxylin and eosin staining label free and can therefore be applied potentially in vivo. Because Docetaxel is a drug acting within the cell nucleus, Raman spectra originating from the cell nucleus region were further investigated in a next step. Thereby we were able to differentiate treated from untreated MCF-7 cells and to quantify the cell–drug response by utilizing linear discriminant analysis models

    GantryMate: A Modular MR-Compatible Assistance System for MR-Guided Needle Interventions

    No full text
    Percutaneous minimally invasive interventions are difficult to perform in closed-bore high-field magnetic resonance systems owing to the limited space between magnet and patient. To enable magnetic resonance–guided needle interventions, we combine a small, patient-mounted assistance system with a real-time instrument tracking sequence based on a phase-only cross-correlation algorithm for marker detection. The assistance system uses 2 movable plates to align an external passive marker with the anatomical target structure. The targeting accuracy is measured in phantom experiments, yielding a precision of 1.7 ± 1.0 mm for target depths up to 38 ± 13 mm. In in vivo experiments, the possibility to track and target static and moving structures is demonstrated

    Immediate and early non-occlusal loading of Straumann implants with a chemically modified surface (SLActive) in the posterior mandible and maxilla: interim results from a prospective multicenter randomized-controlled study

    No full text
    OBJECTIVE: Immediate and early loading of dental implants can simplify treatment and increase overall patient satisfaction. The purpose of this 3-year prospective randomized-controlled multicenter study was to assess the differences in survival rates and bone level changes between immediately and early-loaded implants with a new chemically modified surface (SLActive). This investigation shows interim results obtained after 5 months. MATERIAL AND METHODS: Patients > or =18 years of age missing at least one tooth in the posterior maxilla or mandible were enrolled in the study. Following implant placement, patients received a temporary restoration either on the day of surgery (immediate loading) or 28-34 days after surgery (early loading); restorations consisted of single crowns or two to four unit fixed dental prostheses. Permanent restorations were placed 20-23 weeks following surgery. The primary efficacy variable was change in bone level (assessed by standardized radiographs) from baseline to 5 months; secondary variables included implant survival and success rates. RESULTS: A total of 266 patients were enrolled (118 males and 148 females), and a total of 383 implants were placed (197 and 186 in the immediate and early loading groups, respectively). Mean patient age was 46.3+/-12.8 years. After 5 months, implant survival rates were 98% in the immediate group and 97% in the early group. Mean bone level change from baseline was 0.81+/-0.89 mm in the immediate group and 0.56+/-0.73 mm in the early group (P<0.05). Statistical analysis revealed a significant center effect (P<0.0001) and a significant treatment x center interaction (P=0.008). CONCLUSIONS: The results suggested that Straumann implants with an SLActive can be used predictably in time-critical (early or immediate) loading treatment protocols when appropriate patient selection criteria are observed. The mean bone level changes observed from baseline to 5 months (0.56 and 0.81 mm) corresponded to physiological observations from other studies, i.e., were not clinically significant. The presence of a significant center effect and treatment x center interaction indicated that the differences in bone level changes between the two groups were center dependent

    Tracking of an interventional catheter with a ferromagnetic tip using dual-echo projections

    No full text
    Interventional devices with ferromagnetic components can be manipulated remotely using forces induced by the MRI gradients. To deflect the tip of an endovascular catheter, large ferromagnetic spheres of 2 mm diameter are required to exert sufficiently high magnetic forces; however, tracking of these devices is difficult due to the large image artifacts. In this study, a new dual-echo technique is proposed to improve the stability of localizing and tracking medical devices with ferromagnetic components. MR tracking methods with selective off-resonant excitation and phase compensation with a rephasing gradient can detect ferromagnetic spheres up to a diameter of 1 mm only. In this work, a dual-echo technique is used with two rephasing gradients to stabilize the off-set localization. With rephasing being applied in orthogonal directions, an SNR of 5 was achieved in the signal projections. Compared to a single-echo acquisition the dual-echo method reduces the position error in a phantom from 8 mm to 1.6 mm. In an in vivo study a tracking precision of 4 mm was measured without steering gradients at an image update rate of 2 images per second. Steering experiments were successfully performed with a prototype catheter with ferromagnetic sphere in an aorta phantom and in the vena cava of a pig
    corecore