1,853 research outputs found

    Eight luminous early-type galaxies in nearby pairs and sparse groups I. Stellar populations spatially analysed

    Full text link
    We present a detailed spatial analysis of stellar populations based on long-slit optical spectra in a sample of eight luminous early-type galaxies selected from nearby sparse groups and pairs, three of them may be interacting with a galaxy of similar mass. We have measured luminosity-weighted averages of age, [M/H], [Fe/H], and [α\alpha/Fe] to add empirical data relative to the influence of galaxy mass, environment, interaction, and AGN feedback in their formation and evolution. The stellar population of the individual galaxies were determined through the stellar population synthesis code STARLIGHT using semi-empirical simple stellar population models. Radial variations of luminosity-weighted means of age, [M/H], [Fe/H], and [α\alpha/Fe] were measured up to half of the effective radius of each galaxy. We found trends between these values and the nuclear stellar velocity dispersion. There are also relations between the metallicity/age gradients and the velocity dispersion. Contributions of 1-4 Gyr old stellar populations were found in IC5328 and NGC6758 as well as 4-8 Gyr old ones in NGC5812. Extended gas is present in IC5328, NGC1052, NGC1209, and NGC6758, and the presence of a LINER is identified in all these galaxies. The regions up to one effective radius of all galaxies are dominated by α\alpha-enhanced metal-rich old stellar populations likely due to rapid star formation episodes that induced efficient chemical enrichment. On average, the age and [α\alpha/Fe] gradients are null and the [M/H] gradients are negative, although discordant cases were found. We found no correlation between the stellar population properties and the LINER presence as well as between the stellar properties and environment or gravitational interaction, suggesting that the influence of progenitor mass can-not be discarded in the formation and evolution of early-type galaxies.Comment: 35 pages, 18 figure

    Photometry and dynamics of the minor mergers AM\,1228-260 and AM\,2058-381

    Full text link
    We investigate interaction effects on the dynamics and morphology of the galaxy pairs AM\,2058-381 and AM\,1228-260. This work is based on rr' images and long-slit spectra obtained with the Gemini Multi-Object Spectrograph at the Gemini South Telescope. The luminosity ratio between the main (AM\,2058A) and secondary (AM\,2058B) components of the first pair is a factor of \sim 5, while for the other pair, the main (AM\,1228A) component is 20 times more luminous than the secondary (AM\,1228B). The four galaxies have pseudo-bulges, with a S\'ersic index n<2n<2. Their observed radial velocities profiles (RVPs) present several irregularities. The receding side of the RVP of AM\,2058A is displaced with respect to the velocity field model, while there is a strong evidence that AM\,2058B is a tumbling body, rotating along its major axis. The RVPs for AM\,1228A indicate a misalignment between the kinematic and photometric major axes. The RVP for AM\,1228B is quite perturbed, very likely due to the interaction with AM\,1228A. NFW halo parameters for AM\,2058A are similar to those of the Milky Way and M\,31. The halo mass of AM\,1228A is roughly 10\% that of AM\,2058A. The mass-to-light (M/L) of AM\,2058 agrees with the mean value derived for late-type spirals, while the low M/L for AM\,1228A may be due to the intense star formation ongoing in this galaxy.Comment: 20 pages, 10 figures, accepted for publication in MNRA

    A first study of the galaxy HRG 2304 and its companion AM 1646-795 (NED01)

    Full text link
    Aims. We report the first study of the peculiar ring-like galaxy HRG 2304 (NED02),which was previously classified as a ring galaxy with an elliptical smooth ring. This object was selected to prove that it is a candidate for the Solitaire-type ring galaxies in an early stage of ring formation. The main goal of this work is to provide the spectral characteristics of the current object and its companion AM 1646-795 (NED01). Methods. The study is based on spectroscopic observations in the optical band to highlight the characteristics of this interacting galaxy. To investigate the star formation history of HRG 2304 we used the stellar population synthesis code STARLIGHT. The direct V and B broad band images were used to enhance some fine structures. Results. Along the entire long-slit signal, the spectra of HRG 2304 and its companion resemble that of an early-type galaxy. We estimated a heliocentric systemic redshift of z = 0.0415, corresponding to heliocentric velocities of 12449 km s-1 for HRG 2304 (NED02) and 12430 km s-1 for AM1646-795 (NED01). The spatial variation in the contribution of the stellar population components for both objects are dominated by an old stellar population 2x10^9 < t < 13x10^9 yr. The observed radial-velocity distribution and the fine structures around HRG 2304 suggest an ongoing tidal interaction of both galaxies. Conclusions.The spectroscopic results and the morphological peculiarities of HRG 2304 can be adequately interpreted as an ongoing interaction with the companion galaxy. Both galaxies are early-type, the companion is elliptical, and the smooth distribution of the material around HRG 2304 and its off-center nucleus in the direction of AM1646-795 (NED01) characterize HRG 2304 as a Solitaire-type galaxy candidate in an early stage of ring formation.Comment: Accepted for publication in Astronomy and Astrophysics, 9 pages, 10 figures and 3 table

    Electron temperature fluctuations in NGC 346

    Full text link
    The existence and origin of large spatial temperature fluctuations in HII regions and planetary nebulae are assumed to explain the differences between the heavy element abundances inferred from collisionally excited and recombination lines, although this interpretation remains significantly controversial. We investigate the spatial variation in electron temperature inside NGC 346, the brightest HII region in the Small Magellanic Cloud. Long slit spectrophotometric data of high signal-to-noise were employed to derive the electron temperature from measurements derived from localized observations of the [OIII](λ4959+λ5007)/λ4363\lambda4959 + \lambda5007)/\lambda4363 ratio in three directions across the nebula. The electron temperature was estimated in 179 areas of 5×1.5^{\prime\prime}\times1.5^{\prime\prime} of size distributed along three different declinations. A largely homogeneous temperature distribution was found with a mean temperature of 12 269 K and a dispersion of 6.1%. After correcting for pure measurements errors, a temperature fluctuation on the plane of the sky of ts2=0.0021t^2_{\rm s} = 0.0021 (corresponding to a dispersion of 4.5%) was obtained, which indicates a 3D temperature fluctuation parameter of t20.008t^2 \approx 0.008. A large scale gradient in temperature of the order of 5.7±1.3-5.7\pm1.3 K arcsec1^{-1} was found. The magnitude of the temperature fluctuations observed agrees with the large scale variations in temperature predicted by standard photoionization models, but is too small to explain the abundance discrepancy problem. However, the possible existence of small spatial scale temperature variations is not excluded.Comment: 6 pages, 5 figures, 2 table

    Sulphur abundance determinations in star-forming regions-I: Ionization Correction Factor

    Get PDF
    In the present work we used a grid of photoionization models combined with stellar population synthesis models to derive reliable Ionization Correction Factors (ICFs) for the sulphur in star-forming regions. These models cover a large range of nebular parameters and yielding ionic abundances in consonance with those derived through optical and infrared observational data of star-forming regions. From our theoretical ICFs, we suggested an {\alpha} value of 3.27 in the classical Stasinska formulae. We compared the total sulphur abundance in the gas phase of a large sample of objects by using our Theoretical ICF and other approaches. In average, the differences between the determinations via the use of the different ICFs considered are similar to the uncertainties in the S/H estimations. Nevertheless, we noted that for some objects it could reach up to about 0.3 dex for the low metallicity regime. Despite of the large scatter of the points, we found a trend of S/O ratio to decrease with the metallicity, independently of the ICF used to compute the sulphur total abundance.Comment: Accepted for publication in MNRAS, 21 pages, 8 figures, 5 table

    FM 047-02: a collisional pair of galaxies with a ring

    Full text link
    Aims. We investigate the nature of the galaxy pair FM 047-02, which has been proposed as an archetype of the Solitaire types of peculiar (collisional) ring galaxies. Methods. The study is based on long-slit spectrophotometric data in the range of 3500-9500 angstrons obtained with the Gemini Multi-ObjectComment: 07 pages, 06 figures, 02 tables. arXiv admin note: text overlap with arXiv:1206.071
    corecore