19 research outputs found

    Delineation of phenotypes and genotypes related to cohesin structural protein RAD21

    Get PDF
    RAD21 encodes a key component of the cohesin complex, and variants in RAD21 have been associated with Cornelia de Lange Syndrome (CdLS). Limited information on phenotypes attributable to RAD21 variants and genotype-phenotype relationships is currently published. We gathered a series of 49 individuals from 33 families with RAD21 alterations [24 different intragenic sequence variants (2 recurrent), 7 unique microdeletions], including 24 hitherto unpublished cases. We evaluated consequences of 12 intragenic variants by protein modelling and molecular dynamic studies. Full clinical information was available for 29 individuals. Their phenotype is an attenuated CdLS phenotype compared to that caused by variants in NIPBL or SMC1A for facial morphology, limb anomalies, and especially for cognition and behavior. In the 20 individuals with limited clinical information, additional phenotypes include Mungan syndrome (in patients with biallelic variants) and holoprosencephaly, with or without CdLS characteristics. We describe several additional cases with phenotypes including sclerocornea, in which involvement of the RAD21 variant is uncertain. Variants were frequently familial, and genotype-phenotype analyses demonstrated striking interfamilial and intrafamilial variability. Careful phenotyping is essential in interpreting consequences of RAD21 variants, and protein modeling and dynamics can be helpful in determining pathogenicity. The current study should be helpful when counseling families with a RAD21 variation

    Functional Gene-Expression Analysis Shows Involvement of Schizophrenia-Relevant Pathways in Patients with 22q11 Deletion Syndrome

    Get PDF
    22q11 Deletion Syndrome (22q11DS) is associated with dysmorphology and a high prevalence of schizophrenia-like symptoms. Several genes located on chromosome 22q11 have been linked to schizophrenia. The deletion is thought to disrupt the expression of multiple genes involved in maturation and development of neurons and neuronal circuits, and neurotransmission. We investigated whole-genome gene expression of Peripheral Blood Mononuclear Cells (PBMC's) of 8 22q11DS patients and 8 age- and gender-matched controls, to (1) investigate the expression levels of 22q11 genes and (2) to investigate whether 22q11 genes participate in functional genetic networks relevant to schizophrenia. Functional relationships between genes differentially expressed in patients (as identified by Locally Adaptive Statistical procedure (LAP) or satisfying p<0.05 and fold-change >1.5) were investigated with the Ingenuity Pathways Analysis (IPA). 14 samples (7 patients, 7 controls) passed quality controls. LAP identified 29 deregulated genes. Pathway analysis showed 262 transcripts differentially expressed between patients and controls. Functional pathways most disturbed were cell death, cell morphology, cellular assembly and organization, and cell-to-cell signaling. In addition, 10 canonical pathways were identified, among which the signal pathways for Natural Killer-cells, neurotrophin/Trk, neuregulin, axonal guidance, and Huntington's disease. Our findings support the use of 22q11DS as a research model for schizophrenia. We identified decreased expression of several genes (among which COMT, Ufd1L, PCQAP, and GNB1L) previously linked to schizophrenia as well as involvement of signaling pathways relevant to schizophrenia, of which Neurotrophin/Trk and neuregulin signaling seems to be especially notable

    Motor Learning in Children with Neurofibromatosis Type I

    Get PDF
    The aim of this study was to quantify the frequently observed problems in motor control in Neurofibromatosis type 1 (NF1) using three tasks on motor performance and motor learning. A group of 70 children with NF1 was compared to age-matched controls. As expected, NF1 children showed substantial problems in visuo-motor integration (Beery VMI). Prism-induced hand movement adaptation seemed to be mildly affected. However, no significant impairments in the accuracy of simple eye or hand movements were observed. Also, saccadic eye movement adaptation, a cerebellum dependent task, appeared normal. These results suggest that the motor problems of children with NF1 in daily life are unlikely to originate solely from impairments in motor learning. Our findings, therefore, do not support a general dysfunction of the cerebellum in children with NF1

    Marked Reduction of AKT1 Expression and Deregulation of AKT1-Associated Pathways in Peripheral Blood Mononuclear Cells of Schizophrenia Patients

    No full text
    Background: Recent studies have suggested that deregulated AKT1 signaling is associated with schizophrenia. We hypothesized that if this is indeed the case, we should observe both decreased AKT1 expression as well as deregulation of AKT1 regulated pathways in Peripheral Blood Mononuclear Cells (PBMCs) of schizophrenia patients. Objectives: To examine PBMC expression levels of AKT1 in schizophrenia patients versus controls, and to examine whether functional biological processes in which AKT1 plays an important role are deregulated in schizophrenia patients. Methods/Results: A case-control study, investigating whole-genome PBMC gene expression in male, recent onset (, 5 years) schizophrenia patients (N = 41) as compared to controls (N = 29). Genes, differentially expressed between patients and controls were identified using ANOVA with Benjamini-Hochberg correction (false discovery rate (FDR) = 0.05). Functional aspects of the deregulated set of genes were investigated with the Ingenuity Pathway Analysis (IPA) Software Tool. We found significantly decreased PBMC expression of AKT1 (p <0.001, t = -24.25) in the patients. AKT1 expression was decreased in antipsychotic-free or -naive patients (N = 11), in florid psychotic (N = 20) and in remitted (N = 21) patients. A total of 1224 genes were differentially expressed between patients and controls (FDR = 0.05). Functional analysis of the entire deregulated gene set indicated deregulated canonical pathways involved in a large number of cellular processes: immune system, cell adhesion and neuronal guidance, neurotrophins and (neural) growth factors, oxidative stress and glucose metabolism, and apoptosis and cell-cycle regulation. Many of these processes are associated with AKT1. Conclusions: We show significantly decreased PBMC gene expression of AKT1 in male, recent-onset schizophrenia patients. Our observations suggest that decreased PBMC AKT1 expression is a stable trait in recent onset, male schizophrenia patients. We identified several AKT related cellular processes which are potentially affected in these patients, a majority of which play a prominent role in current schizophrenia hypothese

    Marked Reduction of AKT1 Expression and Deregulation of AKT1-Associated Pathways in Peripheral Blood Mononuclear Cells of Schizophrenia Patients

    Get PDF
    <div><h3>Background</h3><p>Recent studies have suggested that deregulated AKT1 signaling is associated with schizophrenia. We hypothesized that if this is indeed the case, we should observe both decreased AKT1 expression as well as deregulation of AKT1 regulated pathways in Peripheral Blood Mononuclear Cells (PBMCs) of schizophrenia patients.</p> <h3>Objectives</h3><p>To examine PBMC expression levels of AKT1 in schizophrenia patients versus controls, and to examine whether functional biological processes in which AKT1 plays an important role are deregulated in schizophrenia patients.</p> <h3>Methods/Results</h3><p>A case-control study, investigating whole-genome PBMC gene expression in male, recent onset (<5 years) schizophrenia patients (N = 41) as compared to controls (N = 29). Genes, differentially expressed between patients and controls were identified using ANOVA with Benjamini-Hochberg correction (false discovery rate (FDR) = 0.05). Functional aspects of the deregulated set of genes were investigated with the Ingenuity Pathway Analysis (IPA) Software Tool. We found significantly decreased PBMC expression of AKT1 (p<0.001, t = −4.25) in the patients. AKT1 expression was decreased in antipsychotic-free or -naive patients (N = 11), in florid psychotic (N = 20) and in remitted (N = 21) patients. A total of 1224 genes were differentially expressed between patients and controls (FDR = 0.05). Functional analysis of the entire deregulated gene set indicated deregulated canonical pathways involved in a large number of cellular processes: immune system, cell adhesion and neuronal guidance, neurotrophins and (neural) growth factors, oxidative stress and glucose metabolism, and apoptosis and cell-cycle regulation. Many of these processes are associated with AKT1.</p> <h3>Conclusions</h3><p>We show significantly decreased PBMC gene expression of AKT1 in male, recent-onset schizophrenia patients. Our observations suggest that decreased PBMC AKT1 expression is a stable trait in recent onset, male schizophrenia patients. We identified several AKT related cellular processes which are potentially affected in these patients, a majority of which play a prominent role in current schizophrenia hypotheses.</p> </div

    Emotional and behavioral problems in children and adolescents with neurofibromatosis type 1

    No full text
    To assess emotional and behavioral problems in children and adolescents with neurofibromatosis type 1,parents of 183 individuals aged 10.8 ± 3.1 years (range 6-17) completed the Child Behavior Checklist (CBCL). Also, 173 teachers completed the Teacher's Report Form (TRF), and 88 adolescents (children from 11 to 17 years) completed the Youth Self-Report (YSR). According to parental ratings, 32% scored in the clinical range (above the 90th percentile). This percentage was much lower when rated by teachers or adolescents themselves. Scores from all informants on scales for Somatic complaints, Social problems, and Attention problems were significantly different from normative scores. Attentional problems were associated with lower verbal IQ, male gender, younger age, and ADHD-symptoms. Disease-related factors did not predict behavioral problems scores. Substantial emotional and behavioral problems were reported by parents, teachers, and to a lesser extent by adolescents with NF1 themselves. Possibly, a positive illusory bias affects the observation of behavioral problems by adolescents with NF1.status: publishe

    Flowchart description of the analyses.

    No full text
    <p>Initially included: 46 patients and 30 controls.</p><p>Excluded from analysis: 3 patients and 1 control (2 patients: somatic disorders discovered after inclusion; 1 patient and 1 control: insufficient RNA obtained).</p><p>Used for analysis: 43 patients and 29 controls.</p
    corecore