10 research outputs found

    First Evidence of Reproductive Adaptation to “Island Effect” of a Dwarf Cretaceous Romanian Titanosaur, with Embryonic Integument In Ovo

    Get PDF
    <div><h3>Background</h3><p>The Cretaceous vertebrate assemblages of Romania are famous for geographically endemic dwarfed dinosaur taxa. We report the first complete egg clutches of a dwarf lithostrotian titanosaur, from Toteşti, Romania, and its reproductive adaptation to the “island effect”.</p> <h3>Methodology/Findings</h3><p>The egg clutches were discovered in sequential sedimentary layers of the Maastrichtian Sânpetru Formation, Toteşti. The occurrence of 11 homogenous clutches in successive strata suggests philopatry by the same dinosaur species, which laid clutches averaging four ∼12 cm diameters eggs. The eggs and eggshells display numerous characters shared with the positively identified material from egg-bearing level 4 of the Auca Mahuevo (Patagonia, Argentina) nemegtosaurid lithostrotian nesting site. Microscopic embryonic integument with bacterial evidences was recovered in one egg. The millimeter-size embryonic integument displays micron size dermal papillae implying an early embryological stage at the time of death, likely corresponding to early organogenesis before the skeleton formation.</p> <h3>Conclusions/Significance</h3><p>The shared oological characters between the Haţeg specimens and their mainland relatives suggest a highly conservative reproductive template, while the nest decrease in egg numbers per clutch may reflect an adaptive trait to a smaller body size due to the “island effect”. The combined presence of the lithostrotian egg and its embryo in the Early Cretaceous Gobi coupled with the oological similarities between the Haţeg and Auca Mahuevo oological material evidence that several titanosaur species migrated from Gondwana through the Haţeg Island before or during the Aptian/Albian. It also suggests that this island might have had episodic land bridges with the rest of the European archipelago and Asia deep into the Cretaceous.</p> </div

    Ilvaite in polymetamorphic iron ores from Poiana Ruscă (Romania)

    No full text

    Lower Cretaceous Provenance and Sedimentary Deposition in the Eastern Carpathians: Inferences for the Evolution of the Subducted Oceanic Domain and its European Passive Continental Margin

    No full text
    Reconstructing orogenic systems made up dominantly by sediments accreted in trenches is challenging because of the incomplete lithological record of the subducted oceanic domain and its attached passive continental margin thrusted by collisional processes. In this respect, the remarkable similar to 600 km long continuity of sediments exposed in the Eastern Carpathian thin-skinned thrust and fold belt and the availability of quantitative reconstructions for adjacent continental units provide excellent conditions for a paleogeographical study by provenance and sedimentological techniques constraining sediment routing and depositional systems. These sediments were deposited in the Ceahlau-Severin branch of the Alpine Tethys Ocean and over its European passive continental margin. We report sedimentological, paleomagnetic, petrographic, and detrital zircon U-Pb data of Lower Cretaceous sediments from several thin-skinned tectonic units presumably deposited in the Moldavides domain of the Eastern Carpathians. Sedimentological observations in the innermost studied unit demonstrate that deposition took place in a deepwater basin floor sheets to sandy turbidite system. Detrital zircon age data demonstrate sourcing from internal Carpathian basement units. The sediment routing changes in more external units, where black shales basin floor sheets to sandy mud turbidites were sourced from an external, European continental area. Although some degree of mixing between sources located on both margins of the ocean occurred, constraining a relatively narrow width of the deep oceanic basin, these results demonstrate that the internal-most studied unit was deposited near an Early Cretaceous accretionary wedge, located on the opposite internal side relative to the passive continental margin domain of other Moldavides units.6 month embargo; first published: 20 April 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Post-Variscan metamorphism in the Apuseni and Rodna Mountains (Romania): evidence from Sm–Nd garnet and U–Th–Pb monazite dating

    No full text

    Sedimentary associations and regolith

    No full text

    Neogene-Quaternary Volcanic forms in the Carpathian-Pannonian Region: a review

    No full text
    corecore