11 research outputs found

    Impaired Distal Thermoregulation in Diabetes and Diabetic Polyneuropathy

    Get PDF
    Objective: To determine how thermoregulation of the feet is affected by diabetes and diabetic polyneuropathy in both wakefulness and sleep. Research Design and Methods: Normal subjects, diabetic subjects without neuropathy, diabetic subjects with small-fiber diabetic polyneuropathy, and those with advanced diabetic polyneuropathy were categorized based on neurological examination, nerve conduction studies, and quantitative sensory testing. Subjects underwent foot temperature monitoring using an iButton device attached to the foot and a second iButton for recording of ambient temperature. Socks and footwear were standardized, and subjects maintained an activity diary. Data were collected over a 32-h period and analyzed. Results: A total of 39 normal subjects, 28 patients with diabetes but without diabetic polyneuropathy, 14 patients with isolated small-fiber diabetic polyneuropathy, and 27 patients with more advanced diabetic polyneuropathy participated. No consistent differences in foot temperature regulation between the four groups were identified during wakefulness. During sleep, however, multiple metrics revealed significant abnormalities in the diabetic patients. These included reduced mean foot temperature (P < 0.001), reduced maximal temperature (P < 0.001), increased rate of cooling (P < 0.001), as well as increased frequency of variation (P = 0.005), supporting that patients with diabetic polyneuropathy and even those with only diabetes but no diabetic polyneuropathy have impaired nocturnal thermoregulation. Conclusions: Nocturnal foot thermoregulation is impaired in patients with diabetes and diabetic polyneuropathy. Because neurons are highly temperature sensitive and because foot warming is part of the normal biology of sleep onset and maintenance, these findings suggest new potentially treatable mechanisms of diabetes-associated nocturnal pain and sleep disturbance

    How is the circadian rhythm of core body temperature regulated?

    No full text

    Physiological Functions of the Giant Elastic Protein Titin in Mammalian Striated Muscle

    No full text

    Clinical Significance of Preheparin Serum Lipoprotein Lipase Mass in Coronary Vasospasm

    No full text

    Cardiac and neuroprotection regulated by α 1

    No full text

    Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial

    No full text
    Background: The EMPA-KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5-2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62-0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16-1·59), representing a 50% (42-58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council
    corecore