17 research outputs found

    Population response of triploid grass carp to declining levels of hydrilla in the Santee Cooper Reservoirs, South Carolina

    Get PDF
    Approximately 768,500 triploid grass carp ( Ctenopharyngodon idella Valenciennes) were stocked into the Santee Cooper reservoirs, South Carolina between 1989 and 1996 to control hydrilla ( Hydrilla verticillata (L.f.) Royle). Hydrilla coverage was reduced from a high of 17,272 ha during 1994 to a few ha by 1998. During 1997, 1998 and 1999, at least 98 triploid grass carp were collected yearly for population monitoring. Estimates of age, growth, and mortality, as well as population models, were used in the study to monitor triploid grass carp and predict population trends. Condition declined from that measured during a previous study in 1994. The annual mortality rate was estimated at 28% in 1997, 32% in 1998 and 39% in 1999; however, only the 1999 mortality rate was significantly different. Few (2 out of 98) of the triploid grass carp collected during 1999 were older than age 9. We expect increased mortality due to an aging population and sparse hydrilla coverage. During 1999, we estimated about 63,000 triploid grass carp system wide and project less than 3,000 fish by 2004, assuming no future stocking. management, population size Ctenopharyngodon idella, Hydrill

    Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial

    Get PDF
    IMPORTANCE: Secretory phospholipase A2(sPLA2) generates bioactive phospholipid products implicated in atherosclerosis. The sPLA2inhibitor varespladib has favorable effects on lipid and inflammatory markers; however, its effect on cardiovascular outcomes is unknown. OBJECTIVE: To determine the effects of sPLA2inhibition with varespladib on cardiovascular outcomes. DESIGN, SETTING, AND PARTICIPANTS: A double-blind, randomized, multicenter trial at 362 academic and community hospitals in Europe, Australia, New Zealand, India, and North America of 5145 patients randomized within 96 hours of presentation of an acute coronary syndrome (ACS) to either varespladib (n = 2572) or placebo (n = 2573) with enrollment between June 1, 2010, and March 7, 2012 (study termination on March 9, 2012). INTERVENTIONS: Participants were randomized to receive varespladib (500 mg) or placebo daily for 16 weeks, in addition to atorvastatin and other established therapies. MAIN OUTCOMES AND MEASURES: The primary efficacy measurewas a composite of cardiovascular mortality, nonfatal myocardial infarction (MI), nonfatal stroke, or unstable angina with evidence of ischemia requiring hospitalization at 16 weeks. Six-month survival status was also evaluated. RESULTS: At a prespecified interim analysis, including 212 primary end point events, the independent data and safety monitoring board recommended termination of the trial for futility and possible harm. The primary end point occurred in 136 patients (6.1%) treated with varespladib compared with 109 patients (5.1%) treated with placebo (hazard ratio [HR], 1.25; 95%CI, 0.97-1.61; log-rank P = .08). Varespladib was associated with a greater risk of MI (78 [3.4%] vs 47 [2.2%]; HR, 1.66; 95%CI, 1.16-2.39; log-rank P = .005). The composite secondary end point of cardiovascular mortality, MI, and stroke was observed in 107 patients (4.6%) in the varespladib group and 79 patients (3.8%) in the placebo group (HR, 1.36; 95% CI, 1.02-1.82; P = .04). CONCLUSIONS AND RELEVANCE: In patients with recent ACS, varespladib did not reduce the risk of recurrent cardiovascular events and significantly increased the risk of MI. The sPLA2inhibition with varespladib may be harmful and is not a useful strategy to reduce adverse cardiovascular outcomes after ACS. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01130246. Copyright 2014 American Medical Association. All rights reserved

    Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease

    Get PDF
    BACKGROUND: The cholesteryl ester transfer protein inhibitor evacetrapib substantially raises the high-density lipoprotein (HDL) cholesterol level, reduces the low-density lipoprotein (LDL) cholesterol level, and enhances cellular cholesterol efflux capacity. We sought to determine the effect of evacetrapib on major adverse cardiovascular outcomes in patients with high-risk vascular disease. METHODS: In a multicenter, randomized, double-blind, placebo-controlled phase 3 trial, we enrolled 12,092 patients who had at least one of the following conditions: an acute coronary syndrome within the previous 30 to 365 days, cerebrovascular atherosclerotic disease, peripheral vascular arterial disease, or diabetes mellitus with coronary artery disease. Patients were randomly assigned to receive either evacetrapib at a dose of 130 mg or matching placebo, administered daily, in addition to standard medical therapy. The primary efficacy end point was the first occurrence of any component of the composite of death from cardiovascular causes, myocardial infarction, stroke, coronary revascularization, or hospitalization for unstable angina. RESULTS: At 3 months, a 31.1% decrease in the mean LDL cholesterol level was observed with evacetrapib versus a 6.0% increase with placebo, and a 133.2% increase in the mean HDL cholesterol level was seen with evacetrapib versus a 1.6% increase with placebo. After 1363 of the planned 1670 primary end-point events had occurred, the data and safety monitoring board recommended that the trial be terminated early because of a lack of efficacy. After a median of 26 months of evacetrapib or placebo, a primary end-point event occurred in 12.9% of the patients in the evacetrapib group and in 12.8% of those in the placebo group (hazard ratio, 1.01; 95% confidence interval, 0.91 to 1.11; P=0.91). CONCLUSIONS: Although the cholesteryl ester transfer protein inhibitor evacetrapib had favorable effects on established lipid biomarkers, treatment with evacetrapib did not result in a lower rate of cardiovascular events than placebo among patients with high-risk vascular disease. (Funded by Eli Lilly; ACCELERATE ClinicalTrials.gov number, NCT01687998 .)

    Author Correction: An analysis-ready and quality controlled resource for pediatric brain white-matter research

    Get PDF

    Shwachman-Diamond syndrome: a complex case demonstrating the potential for misdiagnosis as asphyxiating thoracic dystrophy (Jeune syndrome)

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>The differential diagnosis of a neonate or fetus presenting with a bell-shaped or long narrow thorax includes a wide range of bony dysplasia syndromes. Where this is accompanied by respiratory distress, asphyxiating thoracic dystrophy (ATD, Jeune syndrome) is an important potential diagnosis. Shwachman-Diamond syndrome (SDS) is widely recognised as a cause of exocrine pancreatic dysfunction, short stature and bone marrow failure. It is not so well appreciated that rib and/or thoracic cage abnormalities occur in 30–50% of patients and that, in severe cases, these abnormalities may lead to thoracic dystrophy and respiratory failure in the newborn. There are, however, at least three previous case reports of children who were initially diagnosed with ATD who were subsequently shown to have SDS.</p> <p><b>Case presentation</b></p> <p>This report details the case history of a patient misdiagnosed as having ATD as a neonate following the neonatal asphyxial death of her brother. She subsequently developed progressive pancytopenia but was only diagnosed with SDS at 11 years of age after referral for haematopoietic stem cell transplantation for bone marrow failure accompanied by trilineage dysplasia and clonal cytogenetic abnormalities on bone marrow examination. Subsequent testing revealed the presence of fat globules in stools, reduced faecal chymotrypsin, fat-soluble vitamin deficiency, metaphyseal dysplasia on skeletal survey and heterozygous mutations of the SBDS gene.</p> <p><b>Conclusion</b></p> <p>This report highlights the potential for diagnostic confusion between ATD and SDS. It is important to include SDS in the differential diagnosis of newborns with thoracic dystrophy and to seek expert clinical and radiological assessment of such children.</p

    Everolimus with Reduced Calcineurin Inhibitor Exposure in Renal Transplantation

    No full text
    Background Everolimus permits reduced calcineurin inhibitor (CNI) exposure, but the efficacy and safety outcomes of this treatment after kidney transplant require confirmation.Methods In a multicenter noninferiority trial, we randomized 2037 de novo kidney transplant recipients to receive, in combination with induction therapy and corticosteroids, everolimus with reduced-exposure CNI (everolimus arm) or mycophenolic acid (MPA) with standard-exposure CNI (MPA arm). The primary end point was treated biopsy-proven acute rejection or eGFR<50 ml/min per 1.73 m2 at post-transplant month 12 using a 10% noninferiority margin.Results In the intent-to-treat population (everolimus n=1022, MPA n=1015), the primary end point incidence was 48.2% (493) with everolimus and 45.1% (457) with MPA (difference 3.2%; 95% confidence interval, -1.3% to 7.6%). Similar between-treatment differences in incidence were observed in the subgroups of patients who received tacrolimus or cyclosporine. Treated biopsy-proven acute rejection, graft loss, or death at post-transplant month 12 occurred in 14.9% and 12.5% of patients treated with everolimus and MPA, respectively (difference 2.3%; 95% confidence interval, -1.7% to 6.4%). De novo donor-specific antibody incidence at 12 months and antibody-mediated rejection rate did not differ between arms. Cytomegalovirus (3.6% versus 13.3%) and BK virus infections (4.3% versus 8.0%) were less frequent in the everolimus arm than in the MPA arm. Overall, 23.0% and 11.9% of patients treated with everolimus and MPA, respectively, discontinued the study drug because of adverse events.Conclusions In kidney transplant recipients at mild-to-moderate immunologic risk, everolimus was noninferior to MPA for a binary composite end point assessing immunosuppressive efficacy and preservation of graft function
    corecore